Publications by authors named "Derrick Ng"

Methylcyclohexane (MCH), one of the liquid organic hydrogen carriers (LOHCs), offers a convenient way to store, transport, and supply hydrogen. Some features of MCH such as its liquid state at ambient temperature and pressure, large hydrogen storage capacity, its well-known catalytic endothermic dehydrogenation reaction and ease at which its dehydrogenated counterpart (toluene) can be hydrogenated back to MCH and make it one of the serious contenders for the development of hydrogen storage and transportation system of the future. In addition to advances on catalysts for MCH dehydrogenation and inorganic membrane for selective and efficient separation of hydrogen, there are increasing research interests on catalytic membrane reactors (CMR) that combine a catalyst and hydrogen separation membrane together in a compact system for improved efficiency because of the shift of the equilibrium dehydrogenation reaction forwarded by the continuous removal of hydrogen from the reaction mixture.

View Article and Find Full Text PDF

Membrane fouling has remained a major challenge limiting the wide application of membrane technology because it reduces the efficiency and shortens the lifespan of the membrane, thus increasing the operation cost. Herein we report a novel dual-function nanocomposite membrane incorporating silver-coated gold nanoparticles (Au@AgNPs) into a sulfosuccinic acid (SSA) cross-linked poly(vinyl alcohol) (PVA) membrane for a pervaporation desalination. Compared with the control PVA membrane and PVA/SSA membrane, the Au@AgNPs/PVA/SSA membrane demonstrated a higher water flux and better salt rejection as well as an enhanced antifouling property.

View Article and Find Full Text PDF

Facilitated transport membranes (FTMs) comprising fixed carrier agents hold considerable potential for obtaining selective and fast separation of mixed molecules in either gas or liquid state. However, diffusion through the membrane is inevitably affected by the resistance from the polymer matrix, where the carrier is absent. Herein, a poly(vinyl alcohol) (PVA)-based separating layer combining the merits of fixed-site transport agents and inorganic nanofillers was developed to reduce the transport resistance.

View Article and Find Full Text PDF

Desalination by pervaporation is a membrane process that is yet to be realized for commercial application. To investigate the feasibility and viability of scaling up, a process engineering model was developed to evaluate the energy requirement based on the experimental study of a hybrid polyvinyl alcohol/maleic acid/tetraethyl orthosilicate (PVA/MA/TEOS) Pervaporation Membrane. The energy consumption includes the external heating and cooling required for the feed and permeate streams, as well as the electrical power associated with pumps for re-circulating feed and maintaining vacuum.

View Article and Find Full Text PDF

A new type of polyamide thin-film composite forward osmosis (FO) membranes were prepared by controlling dopamine self-polymerization in the aqueous phase during interfacial polymerization. The as-prepared membranes were investigated by attenuated total reflection Fourier transform infrared, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy and water contact angle measurements. The influence of the dopamine self-polymerization degree with different polydopamine particle sizes on membrane morphologies and chemical properties was studied by regulating dopamine concentrations in the aqueous phase.

View Article and Find Full Text PDF

To improve the filtration performance and antifouling properties of ultrafiltration (UF) membranes, novel polymer blend UF membranes were fabricated in this study. Carboxylic acid functionalized polysulfone (PSFNA) was synthesized by modifying polysulfone (PSF) with 6-hydroxy-2-naphthoic acid (HNA). A series of polymer blend UF membranes were fabricated by adding different amounts of PSFNA into polyethersulfone (PES) to form a homogeneous casting solution.

View Article and Find Full Text PDF

Colloidal silica involved fouling behaviors in direct contact membrane distillation (DCMD), vacuum membrane distillation (VMD) and sweeping gas membrane distillation (SGMD) were studied. Three foulants were used in the experiments, including colloidal silica as representative of particulate foulants, calcium bicarbonate as dissolved inorganic foulant, and NOM (humic acid + alginate + BSA) as the dissolved organic foulant. The three types of fouants were combined to produce four different feed waters: silica alone; silica + calcium bicarbonate; silica + NOM; and silica + calcium bicarbonate + NOM.

View Article and Find Full Text PDF

Membrane separation is a promising technology for extracting temperature-sensitive organic molecules from solvents. However, a lack of membrane materials that are permeable toward organic solvents yet highly selective curtails large-scale membrane applications. To overcome the trade-off between flux and selectivity, additional molecular transportation pathways are constructed in ultrathin polyamide membranes using highly hydrostable metal organic frameworks with diverse functional surface architectures.

View Article and Find Full Text PDF

In wireless powered communication networks (WPCNs), it is essential to research energy efficiency fairness in order to evaluate the balance of nodes for receiving information and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to derive the mean proportionally fairness utility function with respect to user association probability and receive threshold.

View Article and Find Full Text PDF

Membrane materials with high permeability to solvents while rejecting dissolved contaminants are crucial to lowering the energy costs associated with liquid separations. However, the current lack of stable high-permeability materials require innovative engineering solutions to yield high-performance, thin membranes using stable polymers with low permeabilities. Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) is one of the most permeable polymers but is extremely susceptible to physical aging.

View Article and Find Full Text PDF

To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP).

View Article and Find Full Text PDF

Visible light communication (VLC) networks, consisting of multiple light-emitting diodes (LEDs) acting as optical access points (APs), can provide low-cost high-rate data transmission to multiple users simultaneously in indoor environments. However, the performance of VLC networks is severely limited by the interference between different users. In this paper, we establish a distributed user-centric scheduling framework based on stable marriage theory, and propose a novel decentralized scheduling method to manage interference by forming flexible amorphous cells for all users.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionunfb2au2rt35prti58kr42k5mpicb2av): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once