Publications by authors named "Derrick Crump"

A long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs) and their mixtures. The mesoporous film consisted of an inorganic part, SiO₂ nanoparticles (NPs), along with an organic moiety of poly(allylamine hydrochloride) polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4]) or p-sulphanato calix[8]arene (CA[8]). The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity.

View Article and Find Full Text PDF

Sensory effects in eyes and airways are common symptoms reported by aircraft crew and office workers. Neurological symptoms, such as headache, have also been reported. To assess the commonality and differences in exposures and health symptoms, a literature search of aircraft cabin and office air concentrations of non-reactive volatile organic compounds (VOCs) and ozone-initiated terpene reaction products were compiled and assessed.

View Article and Find Full Text PDF

Correction for 'Passive sampling for volatile organic compounds in indoor air-controlled laboratory comparison of four sampler types' by Todd McAlary et al., Environ. Sci.

View Article and Find Full Text PDF

Background: To date, few studies have analyzed the relationships between socioeconomic status (SES) and indoor air quality (IAQ).

Objective: The aim of this study was to examine the relationships between socioeconomic and other factors and indoor air pollutant levels in French homes.

Methods: The indoor air concentrations of thirty chemical, biological and physical parameters were measured over one week in a sample of 567 dwellings representative of the French housing stock between September 2003 and December 2005.

View Article and Find Full Text PDF

This article describes laboratory testing of four passive diffusive samplers for assessing indoor air concentrations of volatile organic compounds (VOCs), including SKC Ultra II, Radiello®, Waterloo Membrane Sampler (WMS) and Automated Thermal Desorption (ATD) tubes with two different sorbents (Tenax TA and Carbopack B). The testing included 10 VOCs (including chlorinated ethenes, ethanes, and methanes, aromatic and aliphatic hydrocarbons), spanning a range of properties and including some compounds expected to pose challenges (naphthalene, methyl ethyl ketone). Tests were conducted at different temperatures (17 to 30 °C), relative humidities (30 to 90% RH), face velocities (0.

View Article and Find Full Text PDF

The standard method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air (ISO 16000-6:2011) specifies sampling onto the sorbent Tenax TA followed by analysis using thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The informative Annex D to the standard suggests the use of multi-sorbent samplers to extend the volatility range of compounds which can be determined. The aim of this study was to investigate the storage performance of Tenax TA and two multi-sorbent tubes loaded with a mixture of nine VOCs of relevance for material emissions testing.

View Article and Find Full Text PDF

This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect.

View Article and Find Full Text PDF
Article Synopsis
  • The maximum cumulative ratio (MCR) method categorizes mixtures based on toxicity concerns, assessing whether risks are associated with single or multiple substances.
  • The study analyzed data from four European indoor air quality studies, involving 1800 records, to determine health risks from indoor air pollution using the MCR approach.
  • Results showed significant variability in toxicity concerns, with 2% to 77% of samples needing further assessment, highlighting that a single-substance analysis may overlook important combined risks in most cases examined.
View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are commonly associated with contaminated land and may pose a risk to human health via subsurface vapor intrusion to indoor air. Soil vapor sampling is commonly used to assess the nature and extent of VOC contamination, but can be complicated because of the wide range of geologic material permeability and moisture content conditions that might be encountered, the wide variety of available sampling and analysis methods, and several potential causes of bias and variability, including leaks of atmospheric air, adsorption-desorption interactions, inconsistent sampling protocols and varying levels of experience among sampling personnel. Passive sampling onto adsorbent materials has been available as an alternative to conventional whole-gas sample collection for decades, but relationships between the mass sorbed with time and the soil vapor concentration have not been quantitatively established and the relative merits of various commercially available passive samplers for soil vapor concentration measurement is unknown.

View Article and Find Full Text PDF

Controlled laboratory experiments were conducted to demonstrate the use of passive samplers for soil vapor concentration monitoring. Five different passive samplers were studied (Radiello, SKC Ultra, Waterloo Membrane Sampler, ATD tubes and 3M OVM 3500). Ten different volatile organic compounds were used of varying classes (chlorinated ethanes, ethanes, and methanes, aliphatics and aromatics) and physical properties (vapor pressure, solubility and sorption).

View Article and Find Full Text PDF

Construction products can be a significant source of indoor pollutants, including volatile organic compounds that may be a risk to the health and well-being of building occupants. There are currently a number of schemes for the labelling of products according to their potential to emit organic compounds. Assessment of the complex mixtures of compounds that may be released has mandated the development of test methods that allow the determination of the concentrations of the chemicals released from products in controlled test chamber environments.

View Article and Find Full Text PDF

The U.K. government has committed to an 80% reduction in carbon emissions by 2050, with housing accounting for 27% of total current emissions.

View Article and Find Full Text PDF

A series of tests is described that measured the concentration of aerosol ingredients in a test room for a period of several hours after spraying. The results were compared to a simple exponential decay model used by the industry to predict exposure to aerosol ingredients. The results showed that the model can be used to predict exposure once the ingredients had become dispersed throughout the room, and that the exposure dose is initially heavily influenced by location during the period soon after spraying.

View Article and Find Full Text PDF

BRE has conducted a national representative survey of air pollutants in 876 homes in England, designed to increase knowledge of baseline pollutant levels and factors associated with high concentrations. Homes were monitored for carbon monoxide (CO), nitrogen dioxide (NO(2)), formaldehyde and volatile organic compounds (VOCs). In the majority of the homes, concentrations of the measured pollutants were low.

View Article and Find Full Text PDF