Publications by authors named "Derrek Spronk"

Cone beam computed tomography (CBCT) is now widely used in dentistry and growing areas of medical imaging. The presence of strong metal artifacts is however a major concern of using CBCT especially in dentistry due to the presence of highly attenuating dental restorations, fixed appliances, and implants. Virtual monoenergetic images (VMIs) synthesized from dual energy CT (DECT) datasets are known to reduce metal artifacts.

View Article and Find Full Text PDF

The invention of carbon nanotube (CNT) x-ray source arrays has enabled the development of novel imaging systems, including stationary tomosynthesis and stationary computed tomography (CT) with fast data acquisition, mechanically robust structures, and reduced image blur from source-detector motion. In this work, we report the results of simulation studies of potential system configurations for a stationary head CT (s-HCT) using linear CNT x-ray sources and detector arrays. We explored s-HCT configurations that utilize one, two, and three linear CNT source arrays.

View Article and Find Full Text PDF

Purpose: Stationary computed tomography (s-CT) conceptually offers several advantages over existing rotating gantry-based CT. Over the last 40 yr, s-CT has been investigated using different technological approaches. We are developing a s-CT system specifically for head/brain imaging using carbon nanotube (CNT)-based field emission x-ray source array technology.

View Article and Find Full Text PDF

Purpose: The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system.

Methods: The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session74bkbf1fegtdt1hu251p7jjf7vf8iagg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once