This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation.
View Article and Find Full Text PDFThe epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells.
View Article and Find Full Text PDFCraniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function.
View Article and Find Full Text PDFCraniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure.
View Article and Find Full Text PDFGaucher disease (GD), the most prevalent lysosomal disorder, is caused bygene mutations, leading to deficiency of glucocerebrosidase, and accumulation of glycosphingolipids in cells of the mononuclear phagocyte system. While skeletal diseases are the leading cause of morbidity and reduced quality of life in GD, the pathophysiology of bone involvement is not yet fully understood, partly due to lack of relevant human model systems. In this work, we present the first 3D human model of GD using aspiration-assisted freeform bioprinting, which enables a platform tool with a potential for decoding the cellular basis of the developmental bone abnormalities in GD.
View Article and Find Full Text PDFHuman nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models. However, the manual approach is slow, low-throughput and has limitations in terms of achieving the intricate 3D structure of the natural nasal epithelium in a uniform manner.
View Article and Find Full Text PDFClinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation.
View Article and Find Full Text PDFIntroduction: The applied heat level and expose time are main issues in certain operations/applications, such as a laser assisted tissue welding, preparation of collagen-based biomaterials (films, implants). Therefore, the precise investigation of these parameters is crucial. The results can serve as a guideline to assess potential effects while maintaining the functionality of the collagen structures.
View Article and Find Full Text PDF