Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs.
View Article and Find Full Text PDFThe embryo instructs the allocation of cell states to spatially regulate functions. In the blastocyst, patterning of trophoblast (TR) cells ensures successful implantation and placental development. Here, we defined an optimal set of molecules secreted by the epiblast (inducers) that captures in vitro stable, highly self-renewing mouse trophectoderm stem cells (TESCs) resembling the blastocyst stage.
View Article and Find Full Text PDFSenescence, the irreversible cell cycle arrest of damaged cells, is accompanied by a deleterious pro-inflammatory senescence-associated secretory phenotype (SASP). Senescence and the SASP are major factors in aging, cancer, and degenerative diseases, and interfere with the expansion of adult cells in vitro, yet little is known about how to counteract their induction and deleterious effects. Paracrine signals are increasingly recognized as important senescence triggers and understanding their regulation and mode of action may provide novel opportunities to reduce senescence-induced inflammation and improve cell-based therapies.
View Article and Find Full Text PDFFollowing implantation, the naive pluripotent epiblast of the mouse blastocyst generates a rosette, undergoes lumenogenesis and forms the primed pluripotent egg cylinder, which is able to generate the embryonic tissues. How pluripotency progression and morphogenesis are linked and whether intermediate pluripotent states exist remain controversial. We identify here a rosette pluripotent state defined by the co-expression of naive factors with the transcription factor OTX2.
View Article and Find Full Text PDFMesenchymal stem cells/marrow stromal cells (MSCs) are attractive for applications ranging from research and development to use in clinical therapeutics. However, the most commonly studied MSCs, adult bone marrow MSCs (A-MSCs), are limited by significant donor variation resulting in inconsistent expansion rates and multilineage differentiation capabilities. We have recently obtained permission to isolate pediatric MSCs (P-MSCs) from surplus iliac crest bone chips.
View Article and Find Full Text PDFBackground & Aims: Adult liver stem cells are usually maintained in a quiescent/slow-cycling state. However, a proliferative population, marked by leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), was recently identified as an important liver stem cell population. We aimed to investigate the dynamics and functions of proliferative and quiescent stem cells in healthy and injured livers.
View Article and Find Full Text PDFWnt signalling proteins are essential for culture of human organ stem cells in organoids, but most Wnt protein formulations are poorly active in serum-free media. Here we show that purified Wnt3a protein is ineffective because it rapidly loses activity in culture media due to its hydrophobic nature, and its solubilization requires a detergent, CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), that interferes with stem cell self-renewal. By stabilizing the Wnt3a protein using phospholipids and cholesterol as carriers, we address both problems: Wnt activity remains stable in serum-free media, while non-toxic carriers allow the use of high Wnt concentrations.
View Article and Find Full Text PDFHuman bone marrow-derived mesenchymal stem cells (MSCs) are promising candidates for cell-based therapies, but loss of expansion and differentiation potential in vitro limits their applicability. Recently we showed that WNT3A protein promoted MSC proliferation and enhanced their chondrogenic potential, while simultaneously suppressing the propensity of the cartilage to undergo hypertrophic maturation. Since WNT3A protein is costly and rapidly loses its activity in culture, we investigated the possibility of replacing it with cheaper commercially available WNT agonists, specifically lithium chloride (LiCl), CHIR99021 (CHIR), SKL2001, and AMBMP.
View Article and Find Full Text PDFIn female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation.
View Article and Find Full Text PDFDespite the introduction of oral vaccines, rotavirus still kills over 450,000 children under five years of age annually. The absence of specific treatment prompts research aiming at further understanding of pathogenesis and the development of effective antiviral therapy, which in turn requires advanced experimental models. Given the intrinsic limitations of the classical rotavirus models using immortalized cell lines infected with laboratory-adapted strains in two dimensional cultures, our study aimed to model infection and antiviral therapy of both experimental and patient-derived rotavirus strains using three dimensional cultures of primary intestinal organoids.
View Article and Find Full Text PDFEx vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A.
View Article and Find Full Text PDFTherapeutic application of human embryonic stem cells (hESCs) requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g.
View Article and Find Full Text PDFFoxp3 is crucial for both the development and function of regulatory T (Treg) cells; however, the posttranslational mechanisms regulating Foxp3 transcriptional output remain poorly defined. Here, we demonstrate that T cell factor 1 (TCF1) and Foxp3 associates in Treg cells and that active Wnt signaling disrupts Foxp3 transcriptional activity. A global chromatin immunoprecipitation sequencing comparison in Treg cells revealed considerable overlap between Foxp3 and Wnt target genes.
View Article and Find Full Text PDFCdx gene products regulate the extent of axial elongation from the posterior growth zone. These transcription factors sustain the emergence of trunk and tail tissues by providing a suitable niche in the axial progenitor zone, via regulation of Wnt signaling. Cdx genes are expressed in and along the complete primitive streak including its posterior part wherefrom the extraembryonic mesoderm of the allantois emerges.
View Article and Find Full Text PDFPluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. 1). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks.
View Article and Find Full Text PDFTwo broad classes of models have been proposed to explain the patterning of the proximal-distal axis of the vertebrate limb (from the shoulder to the digit tips). Differentiating between them, we demonstrate that early limb mesenchyme in the chick is initially maintained in a state capable of generating all limb segments through exposure to a combination of proximal and distal signals. As the limb bud grows, the proximal limb is established through continued exposure to flank-derived signal(s), whereas the developmental program determining the medial and distal segments is initiated in domains that grow beyond proximal influence.
View Article and Find Full Text PDFBackground: The active form of Vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), has strong anti-proliferative effects, yet the molecular mechanisms underneath this effect remain unclear. In contrast, the molecular mechanism of 1,25D for the regulation of calcium homeostasis has principally been resolved, demonstrating a pivotal role for the vitamin D receptor (VDR).
Results: We first addressed the question whether the anti-proliferative effects of 1,25D are influenced by VDR.
Embryonic stem cells (ESCs) form descendants of all three germ layers when differentiated as aggregates, termed embryoid bodies. In vivo, differentiation of cells depends on signals and morphogen gradients that provide instructive and positional cues, but do such gradients exist in embryoid bodies? We report here the establishment of anteroposterior polarity and the formation of a primitive streak-like region in the embryoid body, dependent on local activation of the Wnt pathway. In this region, cells undergo an epithelial-to-mesenchymal transition and differentiate into mesendodermal progenitors.
View Article and Find Full Text PDFA fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery.
View Article and Find Full Text PDFRecent studies in mice have shown a role for the canonical WNT pathway in lymphocyte development. Because cancers often arise as a result of aberrant activation of signaling cascades that normally promote the self-renewal and expansion of their progenitor cells, we hypothesized that activation of the WNT pathway might contribute to the pathogenesis of lymphoproliferative disease. Therefore, we screened a large panel (n = 162) of non-Hodgkin lymphomas (NHL), including all major WHO categories, for nuclear expression of beta-catenin, a hallmark of "active" WNT signaling.
View Article and Find Full Text PDFWnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles.
View Article and Find Full Text PDF