Publications by authors named "Derk Joester"

Article Synopsis
  • Ameloblasts are specialized cells that create enamel, a complex tissue made up of elongated hydroxylapatite crystals, but their function is not fully understood due to limitations in current experimental models.
  • Researchers have successfully created dental epithelial organoids (DEOs) from adult dental epithelial stem cells, which can maintain important cellular markers and survive for over five months in a controlled environment.
  • When DEOs were transplanted into mice, they produced enamel-like crystals, making them a valuable model for studying the mineralization process in dental tissues and advancing knowledge about enamel regeneration therapies.
View Article and Find Full Text PDF
Article Synopsis
  • Dental caries, a prevalent disease caused by oral biofilms, persists despite fluoride use, but iron oxide nanoparticles (ferumoxytol) can degrade these biofilms with hydrogen peroxide.
  • When combined with stannous fluoride, ferumoxytol significantly enhances the inhibition of biofilm growth and enamel damage compared to using either treatment alone.
  • This combination is effective in controlling dental caries in live subjects at much lower concentrations and shows no negative effects on surrounding tissues or the oral microbiome, highlighting its potential as a safe and efficient treatment for oral health.
View Article and Find Full Text PDF

Developmental Defects of Enamel (DDE) such as Dental Fluorosis (DF) and Molar Incisor Hypomineralization (MIH) are a major public health problem. Their clinical aspects are extremely variable, challenging their early and specific diagnosis and hindering progresses in restorative treatments. Here, a combination of macro-, micro- and nano-scale structural and chemical methods, including, among others, Atom Probe Tomography recently applied on tooth enamel, were used to study and compare MIH, DF and healthy teeth from 89 patients.

View Article and Find Full Text PDF
Article Synopsis
  • Dental caries, a common disease caused by oral biofilms, affects nearly half of the global population despite the use of fluoride, although a new FDA-approved iron oxide nanozyme (ferumoxytol) shows promise in disrupting these biofilms.
  • Combining ferumoxytol with stannous fluoride significantly enhances their effectiveness in preventing both biofilm accumulation and enamel damage, outperforming either treatment alone.
  • The synergy between these two agents not only stabilizes the stannous fluoride but also improves its catalytic activity, demonstrating a novel method to combat dental caries without adverse effects on oral health or microbiome diversity.
View Article and Find Full Text PDF

Amelogenesis, the formation of dental enamel, is driven by specialized epithelial cells called ameloblasts, which undergo successive stages of differentiation. Ameloblasts secrete enamel matrix proteins (EMPs), proteases, calcium, and phosphate ions in a stage-specific manner to form mature tooth enamel. Developmental defects in tooth enamel are common in humans, and they can greatly impact the well-being of affected individuals.

View Article and Find Full Text PDF

The outstanding mechanical and chemical properties of dental enamel emerge from its complex hierarchical architecture. An accurate, detailed multiscale model of the structure and composition of enamel is important for understanding lesion formation in tooth decay (dental caries), enamel development (amelogenesis) and associated pathologies (e.g.

View Article and Find Full Text PDF

Balcite (BaCaCO) is a synthetic analog of rhombohedral carbonate minerals like calcite and dolomite that is disordered on both the cation and anion sublattices. Here, we show that multiple exotic superlattice structures, including a dolomite analog that we call balcomite, can form from balcite at elevated temperatures. The second-order balcite-to-balcomite conversion at temperatures between 150-600 °C is driven by the preference of barium and calcium for different oxygen coordination numbers and facilitated by local carbonate reorientation.

View Article and Find Full Text PDF

Aging is a physiological process with profound impact on the biology and function of biosystems, including the human dentition. While resilient, human teeth undergo wear and disease, affecting overall physical, psychological, and social human health. However, the underlying mechanisms of tooth aging remain largely unknown.

View Article and Find Full Text PDF

The biomineralization of intracellular magnetite in magnetotactic bacteria (MTB) is an area of active investigation. Previous work has provided evidence that magnetite biomineralization begins with the formation of an amorphous phosphate-rich ferric hydroxide precursor phase followed by the eventual formation of magnetite within specialized vesicles (magnetosomes) through redox chemical reactions. Although important progress has been made in elucidating the different steps and possible precursor phases involved in the biomineralization process, many questions still remain.

View Article and Find Full Text PDF

Engineering structures that bridge between elements with disparate mechanical properties are a significant challenge. Organisms reap synergy by creating complex shapes that are intricately graded. For instance, the wear-resistant cusp of the chiton radula tooth works in concert with progressively softer microarchitectural units as the mollusk grazes on and erodes rock.

View Article and Find Full Text PDF

Dental enamel is a principal component of teeth, and has evolved to bear large chewing forces, resist mechanical fatigue and withstand wear over decades. Functional impairment and loss of dental enamel, caused by developmental defects or tooth decay (caries), affect health and quality of life, with associated costs to society. Although the past decade has seen progress in our understanding of enamel formation (amelogenesis) and the functional properties of mature enamel, attempts to repair lesions in this material or to synthesize it in vitro have had limited success.

View Article and Find Full Text PDF

Phase transformations of carbonates are relevant to a wide range of biological, environmental, and industrial processes. Over the past decade, it emerged that crystallization pathways in these systems can be quite complex. Metastable intermediates such as amorphous calcium carbonate (ACC) were found to greatly impact composition, structure, and properties of more stable phases.

View Article and Find Full Text PDF

Skeletogenesis in the sea urchin embryo gives rise to a pair of intricate endoskeletal spicules. Deposition of these skeletal elements in the early larva is the outcome of a morphogenetic program that begins with maternal inputs in the early zygote and results in the specification of the large micromere-primary mesenchyme cell (PMC) lineage. PMCs are of considerable interest as a model system, not only to dissect the mechanism of specific developmental processes, but also to investigate their evolution and the unrivaled level of control over the formation of a graded, mechanically robust, yet single crystalline biomineral.

View Article and Find Full Text PDF

The Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development workshop was held on 23 June 2017 at the Bethesda headquarters of the National Institute of Dental and Craniofacial Research (NIDCR). Discussion topics included model organisms, stem cells/cell lines, and tissues/3D cell culture/organoids. Scientists from a number of disciplines, representing institutions from across the United States, gathered to discuss advances in our understanding of enamel, as well as future directions for the field.

View Article and Find Full Text PDF

The direct observation of amorphous barium carbonate (ABC), which transforms into a previously unknown barium carbonate hydrate (herewith named gortatowskite) within a few hundred milliseconds of formation, is described. In situ X-ray scattering, cryo-, and low-dose electron microscopy were used to capture the transformation of nanoparticulate ABC into gortatowskite crystals, highly anisotropic sheets that are up to 1 μm in width, yet only about 10 nm in thickness. Recrystallization of gortatowskite to witherite starts within 30 seconds.

View Article and Find Full Text PDF

Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca Ba CO ) called balcite is reported, at mild conditions and using an amorphous calcium-barium carbonate (ACBC) (Ca Ba CO ·1.

View Article and Find Full Text PDF

Cryo-SEM is a high throughput technique for imaging biological ultrastructure in its most pristine state, i.e. without chemical fixation, embedding, or drying.

View Article and Find Full Text PDF

On account of its excellent resolution and high throughput, cryoSEM imaging has recently seen resurgence. In this work, we report on the development of cryogenic triple ion gun milling (CryoTIGM™), a broad ion beam milling technique for cryo-planing of vitrified, "frozen-hydrated" specimens. We find that sections prepared with CryoTIGM™ are smooth over exceptionally large areas (~700,000 µm2), and reveal ultrastructural details in similar or better quality than freeze-fractured samples.

View Article and Find Full Text PDF

Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics.

View Article and Find Full Text PDF

Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP) as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack.

View Article and Find Full Text PDF

Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging.

View Article and Find Full Text PDF

Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite.

View Article and Find Full Text PDF

We introduce giant liposomes to investigate phase transformations in picoliter volumes. Precipitation of calcium carbonate in the confinement of DPPC liposomes leads to dramatic stabilization of amorphous calcium carbonate (ACC). In contrast, amorphous strontium carbonate (ASC) is a transient species, and BaCO3 precipitation leads directly to the formation of crystalline witherite.

View Article and Find Full Text PDF

Liposomes present a versatile platform to model intracellular, biologically controlled mineralization. Perhaps, most importantly, precipitation in the confinement of liposomes excludes heterogeneous nucleators that facilitate formation of the thermodynamically most stable crystalline phase in bulk. This provides access to metastable amorphous precursors even in the absence of other additives that interact strongly with the mineral and is fundamental to the capability of cells to prevent spurious nucleation and to select a specific polymorph.

View Article and Find Full Text PDF