Silicosis and other respirable crystalline silica-associated diseases, most notably tuberculosis, have long been substantial causes of morbidity and mortality in South Africa. For the mining and non-mining industries, silicosis elimination programmes have been developed with milestones regarding reduction of levels of exposure to respirable crystalline silica (RCS) and targets regarding the date of eradication. The present paper explores the feasibility of achieving these targets by investigating the evidence that levels of exposure and silicosis incidence rates have declined by an appraisal of the methods for data collection and reporting.
View Article and Find Full Text PDFFor safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed.
View Article and Find Full Text PDFBackground: Engineered nanomaterials (ENMs) have a large economic impact in a range of fields, but the concerns about health and safety of occupational activities involving nanomaterials have not yet been addressed. Monitoring exposure is an important step in risk management. Hence, the interest for reviewing studies that reported a potential for occupational exposure.
View Article and Find Full Text PDFThe paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases.
View Article and Find Full Text PDFOver the past decade, the primary focus of nanotoxicology and nanoenvironmental health and safety efforts has been largely on inhalation exposure to engineered nanomaterials, at the production stage, and much less on considering risks along the life cycle of nano-enabled products. Dermal exposure to nanomaterials and its health impact has been studied to a much lesser extent, and mostly in the context of intentional exposure to nano-enabled products such as in nanomedicine, cosmetics and personal care products. How concerning is dermal exposure to such nanoparticles in the context of occupational exposures? When and how should we measure it? In the first of a series of two papers (Larese Filon et al.
View Article and Find Full Text PDFThe fast penetration of nanoproducts on the market under conditions of significant uncertainty of their environmental properties and risks to humans creates a need for companies to assess sustainability of their products. Evaluation of the potential benefits and risks to build a coherent story for communication with clients, authorities, consumers, and other stakeholders is getting to be increasingly important, but SMEs often lack the knowledge and expertise to assess risks and communicate them appropriately. This paper introduces LICARA nanoSCAN, a modular web based tool that supports SMEs in assessing benefits and risks associated with new or existing nanoproducts.
View Article and Find Full Text PDFThe aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model.
View Article and Find Full Text PDFBackground: Occupational exposure to manufactured nano-objects and their agglomerates, and aggregates (NOAA) has been described in several workplace air monitoring studies. However, data pooling for general conclusions and exposure estimates are hampered by limited exposure data across the occupational life cycle of NOAA and a lack in comparability between the methods of collecting and analysing the data. By applying a consistent method of collecting and analysing the workplace exposure data, this study aimed to provide information about the occupational NOAA exposure levels across various life cycle stages of NOAA in the Netherlands which can also be used for multi-purpose use.
View Article and Find Full Text PDFThis paper reports a study of the dispersion of manufactured nano-objects (MNOs) through the air, both in time and space, during the use of two commercially available nano-spray products and comparable products without MNOs. The main objective was to identify whether personal exposure can occur at a greater distance than the immediate proximity of the source (>1 m from the source), that is, in the "far field" (bystanders), or at a period after the emission occurred (re-entry). The spray experiments were conducted in an experimental room with well-controlled environmental and ventilation conditions (19.
View Article and Find Full Text PDFBackground: In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the potential MNM exposure scenarios within relevant industrial sectors, applied exposure controls, and number of workers potentially exposed to MNM in Dutch industrial sectors producing and applying MNM-enabled end products in the Netherlands.
Methods: A survey was conducted in three phases: (i) identification of MNM-enabled end products; (ii) identification of relevant industrial sectors; and (iii) a tiered telephone survey to estimate actual use of the products among 40 sector organizations/knowledge centres (Tier 1), 350 randomly selected companies (Tier 2), and 110 actively searched companies (Tier 3).
Objective: Few epidemiological studies have addressed the health of workers exposed to novel manufactured nanomaterials. The small current workforce will necessitate pooling international cohorts.
Method: A road map was defined for a globally harmonized framework for the careful choice of materials, exposure characterization, identification of study populations, definition of health endpoints, evaluation of appropriateness of study designs, data collection and analysis, and interpretation of the results.
Control banding (CB) has been developed as a pragmatic tool to manage the risk resulting from exposure to a wide variety of potentially hazardous substances in the absence of firm toxicological and exposure information. Currently, the CB approach is applied for emerging risks such as nanoparticles, by the development of various CB-based tools. Six of these are compared.
View Article and Find Full Text PDFStoffenmanager Nano (version 1.0) is a risk-banding tool developed for employers and employees to prioritize health risks occurring as a result of exposure to manufactured nano objects (MNOs) for a broad range of worker scenarios and to assist implementation of control measures to reduce exposure levels. In order to prioritize the health risks, the Stoffenmanager Nano combines the available hazard information of a substance with a qualitative estimate of potential for inhalation exposure.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
December 2011
As workplace air measurements of manufactured nanoparticles are relatively expensive to conduct, models can be helpful for a first tier assessment of exposure. A conceptual model was developed to give a framework for such models. The basis for the model is an analysis of the fate and underlying mechanisms of nanoparticles emitted by a source during transport to a receptor.
View Article and Find Full Text PDFA simulated workplace study was conducted to investigate the relation between inhalation exposure and dustiness determined with a rotating drum dustiness tester. Three powders were used in the study, i.e.
View Article and Find Full Text PDFThis article proposes a common language for better understanding processes involved in dermal exposure and skin protection. A conceptual model has been developed that systematically describes the transport of agent mass from sources, eventually resulting in "loading" of the skin surface or the skin contaminant layer. In view of a harmonized glossary of exposure terminology this is considered the exposure surface.
View Article and Find Full Text PDFThe concept of occupational air requirement (OAR), representing the quantity of air required to dilute the vapor concentration in the work environment resulting from 1 l product to a concentration below the occupational exposure limit (OEL), was considered to have potential to discriminate between paints that can and cannot be used safely. The OAR is a simple algorithm with the concentration of volatile organic compound (VOC) in the paint, a discrete evaporation factor and the neurotoxicological effects-based OEL. Conceptually, OAR categories of paints for construction and maintenance applications could be identified that can be applied manually without exceeding OELs with no appreciable room ventilation.
View Article and Find Full Text PDFRecently, toxicological and epidemiological studies on health effects related to particle exposure suggest that 'ultrafine particles' (particles with an aerodynamic diameter of <100 nm) may cause severe health effects after inhalation. Although the toxicological mechanisms for these effects have not yet been explained, it is apparent that measuring exposures against mass alone is not sufficient. It is also necessary to consider exposures against surface area and number concentration.
View Article and Find Full Text PDFIntroduction: Limited quantitative information is available on dermal exposure to chemicals during various industrial activities. Therefore, within the scope of the EU-funded RISKOFDERM project, potential dermal exposure was measured during three different tasks: filling, loading and brushing. DEGBE (2-(2-butoxyethoxy)ethanol) was used as a 'marker' substance to determine dermal exposure to the products that workers were handling.
View Article and Find Full Text PDFThis paper describes a new method (DREAM) for structured, semi-quantitative dermal exposure assessment for chemical or biological agents that can be used in occupational hygiene or epidemiology. It is anticipated that DREAM could serve as an initial assessment of dermal exposure, amongst others, resulting in a ranking of tasks and subsequently jobs. DREAM consists of an inventory and evaluation part.
View Article and Find Full Text PDFJ Occup Environ Med
November 2002
Crop activities lead to dermal exposure of workers to pesticides. The efficacy of hand washing as a control measure is unknown. The efficacy of water and soap was studied for some pesticides and exposure situations.
View Article and Find Full Text PDF