Publications by authors named "Derk Binns"

Obesity, insulin resistance, and a host of environmental and genetic factors can drive hyperglycemia, causing β-cells to compensate by increasing insulin production and secretion. In type 2 diabetes (T2D), β-cells under these conditions eventually fail. Rare β-cell diseases like congenital hyperinsulinism (HI) also cause inappropriate insulin secretion, and some HI patients develop diabetes.

View Article and Find Full Text PDF

Angiogenesis is essential for remodeling and repairing existing vessels, and this process requires signaling pathways including those controlled by transforming growth factor beta (TGF-β). We have previously reported crosstalk between TGF-β and the protein kinase With No lysine (K) 1 (WNK1). Homozygous disruption of the gene encoding WNK1 results in lethality in mice near embryonic day E12 due to impaired angiogenesis and this defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase Oxidative Stress-Responsive 1 (OSR1).

View Article and Find Full Text PDF

Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling.

View Article and Find Full Text PDF

Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions.

View Article and Find Full Text PDF
Article Synopsis
  • - Activity-regulated cytoskeleton-associated protein (Arc) is crucial for various types of synaptic plasticity, such as long-term potentiation and depression, and can also form virus-like particles to facilitate mRNA transport between cells.
  • - Arc undergoes several post-translational modifications, particularly phosphorylation by protein kinase C (PKC), which occurs on specific serine residues, affecting its function.
  • - Mutating these serines to mimic phosphorylation leads to reduced palmitoylation, impaired nucleic acid binding, and instability of Arc oligomers, suggesting that PKC phosphorylation may restrict synaptic weakening and mRNA transport.
View Article and Find Full Text PDF

Purpose: Type 1 diabetes (T1D) accounts for an estimated 5% of all diabetes in the United States, afflicting over 1.25 million individuals. Maintaining long-term blood glucose control is the major goal for individuals with T1D.

View Article and Find Full Text PDF

Calmodulin kinase-like vesicle-associated (CaMKv), a pseudokinase belonging to the Ca/calmodulin-dependent kinase family, is expressed predominantly in brain and neural tissue. It may function in synaptic strengthening during spatial learning by promoting the stabilization and enrichment of dendritic spines. At present, almost nothing is known regarding CaMKv structure and regulation.

View Article and Find Full Text PDF

Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1.

View Article and Find Full Text PDF

Pancreatic islet beta cells require a fine-tuned endoplasmic reticulum (ER) stress response for normal function; abnormal ER stress contributes to diabetes pathogenesis. Here, we identified a small molecule, SW016789, with time-dependent effects on beta cell ER stress and function. Acute treatment with SW016789 potentiated nutrient-induced calcium influx and insulin secretion, while chronic exposure to SW016789 transiently induced ER stress and shut down secretory function in a reversible manner.

View Article and Find Full Text PDF

Arc, also known as Arg3.1, is an activity-dependent immediate-early gene product that plays essential roles in memory consolidation. A pool of Arc is located in the postsynaptic cytoplasm, where it promotes AMPA receptor endocytosis and cytoskeletal remodeling.

View Article and Find Full Text PDF

Mutations in the gene encoding dynamin 2 (DNM2), a GTPase that catalyzes membrane constriction and fission, are associated with two autosomal-dominant motor disorders, Charcot-Marie-Tooth disease (CMT) and centronuclear myopathy (CNM), which affect nerve and muscle, respectively. Many of these mutations affect the pleckstrin homology domain of DNM2, yet there is almost no overlap between the sets of mutations that cause CMT or CNM. A subset of CMT-linked mutations inhibit the interaction of DNM2 with phosphatidylinositol (4,5) bisphosphate, which is essential for DNM2 function in endocytosis.

View Article and Find Full Text PDF

The activity-regulated cytoskeletal-associated protein (Arc, also known as Arg3.1) is an immediate early gene product induced by activity/experience and required for multiple modes of synaptic plasticity. Both long-term potentiation (LTP) and long-term depression (LTD) are impaired upon Arc deletion, as well as the ability to form long-term spatial, taste and fear memories.

View Article and Find Full Text PDF

Adrenergic signaling is a well-known input into pancreatic islet function. Specifically, the insulin-secreting islet β cell expresses the G-linked α-adrenergic receptor, which upon activation suppresses insulin secretion. The use of the adrenergic agonist epinephrine at micromolar doses may have supraphysiological effects.

View Article and Find Full Text PDF

Activity-regulated cytoskeletal-associated protein (Arc, also known as activity-regulated gene 3.1 or Arg3.1) is induced in neurons in response to salient experience and neural activity and is necessary for activity-induced forms of synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), cellular substrates of learning and memory.

View Article and Find Full Text PDF
Article Synopsis
  • Pet10p is a yeast protein that specifically binds to lipid droplets containing triacylglycerol (TG) and is crucial for maintaining their structure.
  • Droplets from cells lacking Pet10p are unstable and more likely to fuse when cultured in oleic acid.
  • The protein also interacts with endoplasmic reticulum components, indicating its role in the assembly and integrity of lipid droplets, suggesting that its functions extend beyond just protecting them from breakdown.
View Article and Find Full Text PDF

Upon infection, the intracellular parasite co-opts critical functions of its host cell to avoid immune clearance and gain access to nutritional resources. One route by which co-opts its host cell is through hijacking host organelles, many of which have roles in immunomodulation. Here we demonstrate that infection results in increased biogenesis of host lipid droplets through rewiring of multiple components of host neutral lipid metabolism.

View Article and Find Full Text PDF

Background: Seipin is required for the correct assembly of cytoplasmic lipid droplets. In the absence of the yeast seipin homolog Sei1p (formerly Fld1p), droplets are slow to bud from the endoplasmic reticulum, lack the normal component of proteins on their surface, are highly heterogeneous in size and shape, often bud into the nucleus, and promote local proliferation of the endoplasmic reticulum in which they become tangled. But the mechanism by which seipin catalyzes lipid droplet formation is still uncertain.

View Article and Find Full Text PDF

Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum-droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step.

View Article and Find Full Text PDF

Lipins are phosphatidate phosphatases that generate diacylglycerol (DAG). In this study, we report that yeast lipin, Pah1p, controls the formation of cytosolic lipid droplets. Disruption of PAH1 resulted in a 63% decrease in droplet number, although total neutral lipid levels did not change.

View Article and Find Full Text PDF

Dynamins induce membrane vesiculation during endocytosis and Golgi budding in a process that requires assembly-dependent GTPase activation. Brain-specific dynamin 1 has a weaker propensity to self-assemble and self-activate than ubiquitously expressed dynamin 2. Here we show that dynamin 3, which has important functions in neuronal synapses, shares the self-assembly and GTPase activation characteristics of dynamin 2.

View Article and Find Full Text PDF

Seipin is a transmembrane protein that resides in the endoplasmic reticulum and concentrates at junctions between the ER and cytosolic lipid droplets. Mutations in the human seipin gene, including the missense mutation A212P, lead to congenital generalized lipodystrophy (CGL), characterized by the lack of normal adipose tissue and accumulation of fat in liver and muscles. In both yeast and CGL patient fibroblasts, seipin is required for normal lipid droplet morphology; in its absence droplets appear to bud abnormally from the ER.

View Article and Find Full Text PDF

Phosphatidylinositol 4-kinases play essential roles in cell signaling and membrane trafficking. They are divided into type II and III families, which have distinct structural and enzymatic properties and are essentially unrelated in sequence. Mammalian cells express two type II isoforms, phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha) and IIbeta (PI4KIIbeta).

View Article and Find Full Text PDF

Lipodystrophy is a disorder characterized by a loss of adipose tissue often accompanied by severe hypertriglyceridemia, insulin resistance, diabetes, and fatty liver. It can be inherited or acquired. The most severe inherited form is Berardinelli-Seip Congenital Lipodystrophy Type 2, associated with mutations in the BSCL2 gene.

View Article and Find Full Text PDF

Mammalian cells contain two isoforms of the type II PI4K (phosphoinositol 4-kinase), PI4KIIalpha and beta. These 55 kDa proteins have highly diverse N-terminal regions (approximately residues 1-90) but conserved catalytic domains (approximately from residue 91 to the C-termini). Nearly the entire pool of PI4KIIalpha behaves as an integral membrane protein, in spite of a lack of a transmembrane domain.

View Article and Find Full Text PDF

Phosphorylated ERK2 has an increased capacity to form homodimers relative to unphosphorylated ERK2. We have characterized the nature of the ERK2 dimer and have mutated residues in the crystal dimer interface to examine the impact of dimerization on ERK2 activity. Analysis of the mutants by gel filtration indicates that at least five residues must be mutated simultaneously to produce an ERK2 mutant that is predominantly monomeric.

View Article and Find Full Text PDF