This article reports on a bioanalytical sensor device that hosts three different transducer principles: impedance spectroscopy, quartz-crystal microbalance with dissipation monitoring, and the thermal-current-based heat-transfer method. These principles utilize a single chip, allowing one to perform either microbalance and heat transfer measurements in parallel or heat transfer and impedance measurements. When taking specific precautions, the three measurement modalities can even be used truly simultaneously.
View Article and Find Full Text PDFPeri-implantitis is a growing pathological concern for dental implants which aggravates the occurrence of revision surgeries. This increases the burden on both hospitals and the patients themselves. Research is now focused on the development of materials and accompanying implants designed to resist biofilm formation.
View Article and Find Full Text PDFThis review provides an overview on bio- and chemosensors based on a thermal transducer platform that monitors the thermal interface resistance between a solid chip and the supernatant liquid. The parameter responds in a surprisingly strong way to molecular-scale changes at the solid-liquid interface, which can be measured thermometrically, using for instance thermocouples in combination with a controllable heat source. In 2012, the effect was first observed during on-chip denaturation experiments on complementary and mismatched DNA duplexes that differ in their melting temperature.
View Article and Find Full Text PDFDespite the importance of cell characterization and identification for diagnostic and therapeutic applications, developing fast and label-free methods without (bio)-chemical markers or surface-engineered receptors remains challenging. Here, we exploit the natural cellular response to mild thermal stimuli and propose a label- and receptor-free method for fast and facile cell characterization. Cell suspensions in a dedicated sensor are exposed to a temperature gradient, which stimulates synchronized and spontaneous cell-detachment with sharply defined time-patterns, a phenomenon unknown from literature.
View Article and Find Full Text PDFUnderstanding microbial adhesion and retention is crucial for controlling many processes, including biofilm formation, antimicrobial therapy as well as cell sorting and cell detection platforms. Cell detachment is inextricably linked to cell adhesion and retention and plays an important part in the mechanisms involved in these processes. Physico-chemical and biological forces play a crucial role in microbial adhesion interactions and altering the medium ionic strength offers a potential means for modulating these interactions.
View Article and Find Full Text PDFCell-material interactions are crucial for many biomedical applications, including medical implants, tissue engineering, and biosensors. For implants, while the adhesion of eukaryotic host cells is desirable, bacterial adhesion often leads to infections. Surface free energy (SFE) is an important parameter that controls short- and long-term eukaryotic and prokaryotic cell adhesion.
View Article and Find Full Text PDFWe report on a novel biomimetic sensor that allows sensitive and specific detection of Escherichia coli (E. coli) bacteria in a broad concentration range from 10 up to 10 CFU/mL in both buffer fluids and relevant food samples (i.e.
View Article and Find Full Text PDF