The development of nanopore fabrication methods during the past decade has led to the resurgence of resistive-pulse analysis of nanoparticles. The newly developed resistive-pulse methods enable researchers to simultaneously study properties of a single nanoparticle and statistics of a large ensemble of nanoparticles. This review covers the basic theory and recent advances in applying resistive-pulse analysis and extends to more complex transport motion (e.
View Article and Find Full Text PDFA solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore.
View Article and Find Full Text PDFLiquid-phase negative differential resistance (NDR) is observed in the i-V behavior of a conical nanopore (~300 nm orifice radius) in a glass membrane that separates an external low-conductivity 5 mM KCl solution of dimethylsulfoxide (DMSO)/water (v/v 3:1) from an internal high-conductivity 5 mM KCl aqueous solution. NDR appears in the i-V curve of the negatively charged nanopore as the voltage-dependent electro-osmotic force opposes an externally applied pressure force, continuously moving the location of the interfacial zone between the two miscible solutions to a position just inside the nanopore orifice. An ~80% decrease in the ionic current occurs over less that a ~10 mV increase in applied voltage.
View Article and Find Full Text PDFThe resistive-pulse method was used to monitor the pressure-driven translocation of multilamellar liposomes with radii between 190 and 450 nm through a single conical nanopore embedded in a glass membrane. Liposomes (0% and 5% 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (sodium salt) in 1,2-dilauroyl-sn-glycero-3-phosphocholine or 0%, 5%, and 9% 1,2-dipalmitoyl-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine) were prepared by extrusion through a polycarbonate membrane. Liposome translocation through a glass nanopore was studied as a function of nanopore size and the temperature relative to the lipid bilayer transition temperature, T(c).
View Article and Find Full Text PDFIon current rectification that occurs in conical-shaped glass nanopores in low ionic strength solutions is shown to be dependent on the rate of pressure-driven electrolyte flow through the nanopore, decreasing with increasing flow rate. The dependence of the i-V response on pressure is due to the disruption of cation and anion distributions at equilibrium within the nanopore. Because the flow rate is proportional to the third power of the nanopore orifice radius, the pressure-driven flow can eliminate rectification in nanopores with radii of ∼200 nm but has a negligible influence on rectification in a smaller nanopore with a radius of ∼30 nm.
View Article and Find Full Text PDFThis report presents a fundamental study of nanoparticle transport phenomena in conical-shaped pores contained within glass membranes. The electrophoretic translocation of charged polystyrene (PS) nanoparticles (80- and 160-nm-radius) was investigated using the Coulter counter principle (or "resistive-pulse" method) in which the time-dependent nanopore current is recorded as the nanoparticle is driven across the membrane. Particle translocation through the conical-shaped nanopore results in a direction-dependent and asymmetric triangular-shaped resistive pulse.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2011
Deformation of 570-nm radius poly(N-isopropylacrylamide-co-acrylic acid) microgels passing through individual 375- to 915-nm radius nanopores in glass has been investigated by the resistive-pulse method. Particle translocation through nanopores of dimensions smaller than the microgel yields electrical signatures reflecting the dynamics of microgel deformation. Translocation rates, and event duration and peak shape, are functions of the conductivities of microgel and electrolyte.
View Article and Find Full Text PDF