Publications by authors named "Dergilev K"

The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network.

View Article and Find Full Text PDF

The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFβ1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres).

View Article and Find Full Text PDF

Fibrinolytics delivered into the general circulation lack selectivity for nascent thrombi, reducing efficacy and increasing the risk of bleeding. Urokinase-type plasminogen activator (uPA) transgenically expressed within murine platelets provided targeted thromboprophylaxis without causing bleeding but is not clinically feasible. Recent advances in generating megakaryocytes prompted us to develop a potentially clinically relevant means to produce "antithrombotic" platelets from CD34+ hematopoietic stem cell-derived in vitro-grown megakaryocytes.

View Article and Find Full Text PDF

Cardiosphere-derived cells (CDCs) are currently being evaluated in clinical trials as a potential therapeutic tool for regenerative medicine. The effectiveness of transplanted CDCs is largely attributed to their ability to release beneficial soluble factors to enhance therapeutic effects. An emerging area of research is the pretreatment of stem cells, including CDCs, with various cytokines to improve their therapeutic properties.

View Article and Find Full Text PDF
Article Synopsis
  • Ischemic heart disease is a leading cause of death, with the adult heart lacking natural regenerative abilities after damage.
  • Stem-cell-based therapies, particularly cardiosphere-derived cells (CDCs), show promise for treating heart damage due to their ability to secrete bioactive molecules that promote healing.
  • Research indicates that Tumor Necrosis Factor alpha (TNFa), present in the inflammatory environment of damaged heart tissue, can enhance the secretome of CDCs, potentially improving their ability to support new blood vessel formation.
View Article and Find Full Text PDF

One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions.

View Article and Find Full Text PDF

A Matrigel-based tube formation assay is a simple and widely accepted 2D angiogenesis model in vitro. Extracellular matrix (EM) proteins and growth factors (GFs) from Matrigel exclusively trigger endothelial cell (EC) tubular network (ETN) formation. Co-culture of ECs with mesenchymal stromal cells (MSCs) is another and more reliable in vitro angiogenesis assay.

View Article and Find Full Text PDF

We studied the effect of 3D-culturing of cells in the form of cardiospheres on the expression of genes encoding vascular progenitor cell markers and angiogenesis regulators and on the production of proangiogenic factors. Cardiospheres were obtained by culturing mouse cardiac explants followed by self-assembly on poly-D-lysine. Gene expression was assessed by real-time PCR, and the production of proangiogenic factors was assessed by Microarray analysis of the cell secretome.

View Article and Find Full Text PDF

It was suggested that the urokinase system plays a certain role in the regulation of activity of the endothelial-mesenchymal transition and in the development of perivascular fibrosis. Urokinase (uPA), the key component of the urokinase system, is a serine protease that binds to its receptor on the cell surface (uPAR) and affects the cell microenvironment components through the formation of plasmin, remodeling of the extracellular matrix, release of growth factors, and initiation of intracellular signals. The heart of PLAUR gene knockout C57BL/129 (uPAR-/-) mice showed signs of vasculopathy: reduced number of capillaries/arterioles, signs of endothelial-mesenchymal transition in endothelial cells, vascular wall remodeling, and deposition of extracellular matrix components.

View Article and Find Full Text PDF

Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.

View Article and Find Full Text PDF

Murine peritoneal macrophages isolated from the lavage fluid after administration of thioglycolate and concanavalin A are presented by two populations of cells of different diameters. Polarization of macrophages into a proinflammatory (M1) phenotype is accompanied by an increase in number of small cells. Macrophages obtained after administration of thioglycolate demonstrate higher tendency to anti-inflammatory (M2) phenotype, while macrophages isolated after administration of concanavalin A are committed in the proinflammatory direction.

View Article and Find Full Text PDF

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are a safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment of MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types.

View Article and Find Full Text PDF

Aim      To study the effect of hypoxia on the activity of epithelial-mesenchymal transition (EMT) in epicardial cells, which provides formation of a specialized microenvironment.Material and methods   This study used a model of experimental myocardial infarction created by ligation of the anterior descendent coronary artery. The activity of epicardial cells after a hypoxic exposure was studied with the hypoxia marker, pimonidazole, bromodeoxyuridine, immunofluorescent staining of heart cryosections, and in vitro mesothelial cell culture.

View Article and Find Full Text PDF

We evaluated the content of active form of TGF-β1 in the intact and post-infarction heart and the effect of this factor on the properties of epicardial cells. During the acute stage after myocardial infarction, the production of TGF-β1 in the heart increased, which closely correlated with activation of epicardial cells (appearance of a pool of Wt1+ epicardial cells entering the epithelial-mesenchymal transition). The role of TGF-β1 as the factor of epicardial activation was confirmed by the results of in vitro experiments: addition of recombinant TGF-β1 to cultured epicardial cells led to enhanced expression of genes of epithelial-mesenchymal transition and phenotypic transformation of these cells leading to the appearance of cells with markers of smooth muscle cells and fibroblasts.

View Article and Find Full Text PDF

Cells of all tissues in human body interact with their neighboring cells and components of the extracellular matrix thereby creating a unique 3D microenvironment. These interactions are realized through a complex network of biochemical and mechanical signals that are important in maintaining normal cellular homeostasis. Numerous attempts have been undertaken during the last two decades to develop 3D models for studying their properties and understanding the mechanisms of regulation of cell microenvironment in vivo.

View Article and Find Full Text PDF

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF.

View Article and Find Full Text PDF

Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. In recent years, researchers are attracted to the use of cell therapy based on stem cell and progenitor cells, which has been a promising strategy for cardiac repair after injury. However, conducted research using intracoronary or intramyocardial transplantation of various types of stem/progenitor cells as a cell suspension showed modest efficiency.

View Article and Find Full Text PDF

TNFα mediates the expression of MMP-9 in THP-1 monocytes induced by urokinase (uPA). Upregulation of MMP-9 caused by uPA and TNFα is suppressed by etanercept, a TNFα inhibitor. In addition, uPA stimulates TNFα mRNA expression.

View Article and Find Full Text PDF

Vitronectin, extracellular matrix protein, plays an important role in embryonic development and in organ and tissue reparation. A unique characteristic of vitronectin is specific binding of various biological molecules, including urokinase receptor (uPAR), extracellular matrix components, adhesion receptors, growth factors, thus supporting the modulation of cell behavior. Vitronectin is in fact not found in intact myocardium, while after infarction its level increases significantly, which correlates with accumulation of uPAR progenitor cardiac cells in the focus.

View Article and Find Full Text PDF

Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model.

View Article and Find Full Text PDF

Today, transplantation of stem / progenitor cells is a promising approach for the treatment of heart diseases. The therapeutic potential of transplanted cells directly depends on the method of delivery to the myocardium, which determines their regenerative properties. It is important for the development of effective methods of cell therapy.

View Article and Find Full Text PDF

Mesenchymal stromal cells from rat adipose tissue were transduced with adeno-associated viral (AAV) vector encoding stem cell factor SCF that stimulates proliferation of cardiac c-kit cells and improved cardiac function and survival of animals after myocardial infarction. Extracellular vesicles isolated from the medium conditioned by mesenchymal stromal cells by ultracentrifugation were characterized by Western blotting, transmission electron microscopy, nanoparticle tracking analysis, immunostaining, and mass spectrometry analysis. Using proteomic analysis, we identified transgenic SCF in extracellular vesicles released by AAV-modified mesenchymal stromal cells and detected some proteins specific of extracellular vesicles secreted by transduced cells.

View Article and Find Full Text PDF

We showed the possibility of generating combined tissue-engineered cell consisting of layers of rat cardiac stem cells and mesenchymal stromal cells from the adipose tissue. Cell-cell interaction within the cell sheet promoted proliferation of cardiac stem cells, expression of endothelial differentiation marker ETS1, and Notch signaling activation. The obtained results provide new insights into possible mechanisms of stimulation of endogenous regeneration processes after myocardial damage and demonstrate potential of cell-based cardiomyoplasty with the use of these combined cell sheets.

View Article and Find Full Text PDF

Proliferation, subsequent migration to the damaged area, differentiation into appropriate cell types, and/or secretion of biologically active molecules and extracellular vesicles are important processes that underlie the involvement of stem/progenitor cells in the repair and regeneration of tissues and organs. All these functions are regulated through the interaction between stem cells and the microenvironment in the tissue cell niches that control these processes through direct cell-cell interactions, production of the extracellular matrix, release of extracellular vesicles, and secretion of growth factors, cytokines, chemokines, and proteases. One of the most important proteolytic systems involved in the regulation of cell migration and proliferation is the urokinase system represented by the urokinase plasminogen activator (uPA, urokinase), its receptor (uPAR), and inhibitors.

View Article and Find Full Text PDF

Notch signaling pathway is a universal regulator of cell fate in embryogenesis and in maintaining the cell homeostasis of adult tissue. Through local cell-cell interactions, he controls neighboring cells behavior and determines their capacity for self-renewal, growth, survival, differentiation, and apoptosis. Recent studies have shown that the control of regenerative processes in the heart is also carried out with the participation of Notch system.

View Article and Find Full Text PDF