Multiple therapies have been studied to ameliorate the neuroinhibitory cues present after traumatic injury to the central nervous system. Two previous in vitro studies have demonstrated the efficacy of the FDA-approved cardiovascular therapeutic, protamine (PRM), to overcome neuroinhibitory cues presented by chondroitin sulfates; however, the effect of a wide range of PRM concentrations on neuronal and glial cells has not been evaluated. In this study, we investigate the therapeutic efficacy of PRM with primary cortical neurons, hippocampal neurons, mixed glial cultures, and astrocyte cultures.
View Article and Find Full Text PDFNerve guidance scaffolds containing anisotropic architectures provide topographical cues to direct regenerating axons through an injury site to reconnect the proximal and distal end of an injured nerve or spinal cord. Previouscultures of individual neurons revealed that fiber characteristics such as fiber diameter and inter-fiber spacing alter neurite morphological features, such as total neurite length, the longest single neurite, branching density, and the number of primary neurites. However, the relationships amongst these four neurite morphological features have never been studied on fibrous topographies using multivariate analysis.
View Article and Find Full Text PDFElectrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production.
View Article and Find Full Text PDFElectrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system.
View Article and Find Full Text PDFSAR studies on a series of thiophene amide derivatives provided CB(2) receptor agonists. The activity of the compounds was characterized by radioligand binding determination, multiple functional assays, ADME, and pharmacokinetic studies. A representative compound with selectivity for CB(2) over CB(1) effectively produced analgesia in behavioral models of neuropathic, inflammatory, and postsurgical pain.
View Article and Find Full Text PDFSynthesis and biological evaluation of a novel class of substituted N-benzyl-1-(2,3-dichlorophenyl)-1H-tetrazol-5-amine derivatives resulted in the identification of potent P2X(7) antagonists. These compounds were assayed for activity at both the human and rat P2X(7) receptors. On the benzyl moiety, a variety of functional groups were tolerated, including both electron-withdrawing and electron-donating substituents.
View Article and Find Full Text PDFN'-aryl acyl hydrazides were identified as P2X7 receptor antagonists. Structure-activity relationship (SAR) studies evaluated functional activity by monitoring calcium flux inhibition in cell lines expressing recombinant human and rat P2X7 receptors. Selected analogs were assayed in vitro for their capacity to inhibit release of cytokine IL-1beta.
View Article and Find Full Text PDF1-Benzyl-5-aryltetrazoles were discovered to be novel antagonists for the P2X(7) receptor. Structure-activity relationship (SAR) studies were conducted around both the benzyl and phenyl moieties. In addition, the importance of the regiochemical substitution on the tetrazole was examined.
View Article and Find Full Text PDF