This study aims to uncover potent cytochrome P450 (CYP) and epoxide hydrolase (EH) metabolites implicated in Aβ and/or tau-induced neurodegeneration, independent of neuroinflammation, by utilizing () as a model organism. Our research reveals that Aβ and/or tau expression in disrupts the oxylipin profile, and epoxide hydrolase inhibition alleviates the ensuing neurodegeneration, likely through elevating the epoxy-to-hydroxy ratio of various CYP-EH metabolites. In addition, our results indicated that the Aβ and tau likely affect the CYP-EH metabolism of PUFA through different mechanism.
View Article and Find Full Text PDFEven after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown.
View Article and Find Full Text PDFEven after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown.
View Article and Find Full Text PDF