Publications by authors named "Derek R Eitzmann"

Background: Infections from the hepatitis B virus (HBV) are a major risk factor for hepatocellular carcinoma, one of the most common types of liver cancer. Circulating cell-free DNA (ccfDNA) in human plasma can be used as a non-invasive biomarker for diagnosing HBV-related liver diseases. The isolation of target ccfDNA sequences is often challenging due to the co-extraction of highly abundant non-target DNA from samples.

View Article and Find Full Text PDF

The expanding horizon of diagnostic and therapeutic applications involving nucleic acids (NA) requires novel tools for purification, including minimal sample preparation. In this work, thin-film microextraction devices featuring five poly ionic sorbents were examined as anion exchange extraction phases for the rapid purification of NAs. Each sorbent is composed of a nonionic cross-linker and a methacrylate monomer containing a core tetra-alkyl ammonium moiety with an alkyl, anionic, or cationic residue.

View Article and Find Full Text PDF

Rapid diagnostic assays are often a critical tool for monitoring water quality in developing and developed countries. Conventional testing requires 24-48 h for incubation, resulting in delayed remediation and increasing the likelihood of negative outcomes. In this study, we report a workflow for detection of E.

View Article and Find Full Text PDF

Nucleic acid detection is widely used in the amplification and quantitation of nucleic acids from biological samples. While polymerase chain reaction (PCR) enjoys great popularity, expensive thermal cyclers are required for precise temperature control. Loop-mediated isothermal amplification (LAMP) enables highly sensitive, rapid, and low-cost amplification of nucleic acids at constant temperatures.

View Article and Find Full Text PDF

Nucleic acids are ubiquitous in biological samples and can be sensitively detected using nucleic acid amplification assays. To achieve highly accurate and reliable results, nucleic acid isolation and purification is often required and can limit the accessibility of these assays. Encapsulation of these workflows onto a single device may be achieved through fabrication methodologies featuring commercial three-dimensional (3D) printers.

View Article and Find Full Text PDF

Nucleic acid analysis has been at the forefront of the COVID-19 global health crisis where millions of diagnostic tests have been used to determine disease status as well as sequencing techniques that monitor the evolving genome of SARS-CoV-2. In this study, we report the development of a sample preparation method that decreases the time required for DNA isolation while significantly increasing the sensitivity of downstream analysis. Functionalized planar supports are modified with a polymeric ionic liquid sorbent coating to form thin film microextraction (TFME) devices.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification (LAMP) holds great potential for point-of-care (POC) diagnostics due to its speed and sensitivity. However, differentiation between spurious amplification and amplification of the target sequence is a challenge. Herein, we develop the use of molecular beacon (MB) probes for the sequence-specific detection of LAMP on commercially available lateral flow immunoassay (LFIA) strips.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) is a promising biomarker that can provide a wealth of information regarding the genetic makeup of cancer as well as provide a guide for monitoring treatment. Methods for rapid and accurate profiling of ctDNA are highly desirable in order to obtain the necessary information from this biomarker. However, isolation of ctDNA and its subsequent analysis remains a challenge due to the dependence on expensive and specialized equipment.

View Article and Find Full Text PDF