The mechanical resilience of the knee meniscus is provided by a group of structural proteins in the extracellular matrix. Aging can alter the quantity and molecular structure of these proteins making the meniscus more susceptible to debilitating tears. In this study, we determined the effect of aging on the quantity of structural proteins and collagen crosslinks in human lateral meniscus, and examined whether the quantity of these molecules was predictive of tensile toughness (area under the stress-strain curve).
View Article and Find Full Text PDFAged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse.
View Article and Find Full Text PDFMeniscal tears are a common, painful, and debilitating knee injury with limited treatment options. Computational models that predict meniscal tears may help advance injury prevention and repair, but first these models must be validated using experimental data. Here we simulated meniscal tears with finite element analysis using continuum damage mechanics (CDM) in a transversely isotropic hyperelastic material.
View Article and Find Full Text PDFThe calculation of tensile mechanical properties from stress-strain curves is a fundamental step in characterizing material behavior, yet no standardized method exists to perform these calculations for soft tissue. To address this deficiency, we developed a free web application called Dots-on-Plots2 that fully automates the calculation of tensile mechanical properties from stress-strain curves. The analyzed mechanical properties include the strength, strain, and energy at four points of interest (transition, yield, ultimate, and rupture), and the linear modulus.
View Article and Find Full Text PDFThe knee meniscus is a soft fibrous tissue with a high incidence of injury in older populations. The objective of this study was to determine the effect of age on the failure behavior of human knee meniscus when applying uniaxial tensile loads parallel or perpendicular to the primary circumferential fiber orientation. Two age groups were tested: under 40 and over 65 years old.
View Article and Find Full Text PDFTensile testing is an essential experiment to assess the mechanical integrity of musculoskeletal soft tissues, yet standard test methods have not been developed to ensure the quality and reproducibility of these experiments. The ASTM International standards organization has created tensile test standards for common industry materials that specify geometric dimensions of test specimens (coupons) that promote valid failures within the gage section (midsubstance), away from the grips. This study examined whether ASTM test standards for plastics, elastomers, and fiber-reinforced composites are suitable for tensile testing of bovine meniscus along the circumferential fiber direction.
View Article and Find Full Text PDF