Proc Natl Acad Sci U S A
February 2021
Using a gain-of-function screen in , we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the transcription factor or its target, , Cbt does not increase E2F1 or Cyclin E activity.
View Article and Find Full Text PDFBoth basal and submucosal gland (SMG) duct stem cells of the airway epithelium are capable of sphere formation in the in vitro sphere assay, although the efficiency at which this occurs is very low. We sought to improve this efficiency of sphere formation by identifying subpopulations of airway basal stem cells (ABSC) and SMG duct cells based on their aldehyde dehydrogenase (ALDH) activity. ALDH(hi) ABSCs and SMG duct cells were highly enriched for the population of cells that could make spheres, while the co-culture of ALDH(hi) differentiated cells with the ALDH(hi) ABSCs increased their sphere-forming efficiency.
View Article and Find Full Text PDFThe coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known.
View Article and Find Full Text PDFBasal cells and submucosal gland (SMG) duct cells have been isolated and shown to be stem/progenitor cell populations for the murine airway epithelium. However, methods for the isolation of basal and SMG duct cells from human airways have not been defined. We used an optimized two-step enzyme digestion protocol to strip the surface epithelium from tracheal specimens separate from SMG cells, and we then sorted the basal and duct stem/progenitors using fluorescence-activated cell sorting.
View Article and Find Full Text PDFThe large airways are directly in contact with the environment and therefore susceptible to injury from toxins and infectious agents that we breath in. The large airways therefore require an efficient repair mechanism to protect our bodies. This repair process occurs from stem cells in the airways and isolating these stem cells from the airways is important for understanding the mechanisms of repair and regeneration.
View Article and Find Full Text PDFBackground And Objective: The heterotopic syngeneic tracheal transplant mouse model is an acute hypoxic-ischemic injury model that undergoes complete repair and regeneration. We hypothesized that the repair and regeneration process of the surface epithelium and submucosal glands would occur in a reproducible pattern that could be followed by the expression of specific markers of epithelial cell types.
Methods: We used the syngeneic heterotopic tracheal transplant model to develop a temporal and spatial map of cellular repair and regeneration by examining the tracheal grafts at post-transplant days 1, 3, 5, 7, 10 and 14.
Epigenetic changes have been implicated in the pathogenesis of asthma. We sought to determine if IL13, a key cytokine in airway inflammation and remodeling, induced epigenetic DNA methylation and miRNAs expression changes in the airways in conjunction with its transcriptional gene regulation. Inducible expression of an IL13 transgene in the airways resulted in significant changes in DNA methylation in 177 genes, most of which were associated with the IL13 transcriptional signature in the airways.
View Article and Find Full Text PDFAlthough both natural and induced regulatory T (nTreg and iTreg) cells can enforce tolerance, the mechanisms underlying their synergistic actions have not been established. We examined the functions of nTreg and iTreg cells by adoptive transfer immunotherapy of newborn Foxp3-deficient mice. As monotherapy, only nTreg cells prevented disease lethality, but did not suppress chronic inflammation and autoimmunity.
View Article and Find Full Text PDFThe airway epithelium is in direct contact with the environment and therefore constantly at risk for injury. Basal cells (BCs) have been found to repair the surface epithelium (SE), but the contribution of other stem cell populations to airway epithelial repair has not been identified. We demonstrated that airway submucosal gland (SMG) duct cells, in addition to BCs, survived severe hypoxic-ischemic injury.
View Article and Find Full Text PDFSmoking is the most important known risk factor for the development of lung cancer. Tobacco exposure results in chronic inflammation, tissue injury, and repair. A recent hypothesis argues for a stem/progenitor cell involved in airway epithelial repair that may be a tumor-initiating cell in lung cancer and which may be associated with recurrence and metastasis.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) mediates induction of CYP1A1 and CYP1B1 by 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (dioxin) via binding to xenobiotic-responsive elements (XREs) in their enhancer regions. CYP1A1 and CYPIB1 were both inducible by dioxin in human MCF-7 cells. However, only CYP1A1 was inducible in human HepG2 cells.
View Article and Find Full Text PDFBackground: The hyper IgE syndrome (HIES) is characterized by abscesses, eczema, recurrent infections, skeletal and connective tissue abnormalities, elevated serum IgE, and diminished inflammatory responses. It exists as autosomal-dominant and autosomal-recessive forms that manifest common and distinguishing clinical features. A majority of those with autosomal-dominant HIES have heterozygous mutations in signal transducer and activator of transcription (STAT)-3 and impaired T(H)17 differentiation.
View Article and Find Full Text PDFBackground: Circulating epithelial progenitor cells are important for repair of the airway epithelium in a mouse model of tracheal transplantation. We therefore hypothesized that circulating epithelial progenitor cells would also be present in normal human subjects and could be important for repair of the airway after lung injury. As lung transplantation is associated with lung injury, which is severe early on and exacerbated during episodes of infection and rejection, we hypothesized that circulating epithelial progenitor cell levels could predict clinical outcome following lung transplantation.
View Article and Find Full Text PDF