Uric acid (UA), a metabolite of purine and fructose metabolism, is linked to inflammation and metabolic disorders, including gout and cardiovascular disease. Its pro-inflammatory effects are largely driven by the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to increased cytokine production. Beta-hydroxybutyrate (BHB), a ketone produced during fasting or carbohydrate restriction, has been shown to reduce inflammation.
View Article and Find Full Text PDFReceptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.
View Article and Find Full Text PDFA complication of reducing sugars is that they can undergo Maillard chemical reactions, forming advanced glycation end-products (AGEs) that can induce oxidative stress and inflammation via engagements with the main receptor for AGEs (RAGE) in various tissues. Certain sugars, such as glucose and fructose, are well known to cause AGE formation. Recently, allulose has emerged as a rare natural sugar that is an epimer of fructose and which is of low caloric content that is minimally metabolized, leading to it being introduced as a low-calorie sugar alternative.
View Article and Find Full Text PDFThe receptor for advanced glycation end products (RAGE) is a key contributor to immune and inflammatory responses in myriad diseases. RAGE is a transmembrane pattern recognition receptor with a special interest in pulmonary anomalies due to its naturally abundant pulmonary expression. Our previous studies demonstrated an inflammatory role for RAGE following acute 30-day exposure to secondhand smoke (SHS), wherein immune cell diapedesis and cytokine/chemokine secretion were accentuated in part via RAGE signaling.
View Article and Find Full Text PDFReceptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors of the immunoglobin superfamily prominently expressed by lung epithelium. Previous experiments demonstrated that over-expression of RAGE by murine alveolar epithelium throughout embryonic development causes neonatal lethality coincident with significant lung hypoplasia. In the current study, we evaluated the expression of NKX2.
View Article and Find Full Text PDF