Publications by authors named "Derek L Patton"

Article Synopsis
  • Polyacrylonitrile (PAN) is crucial for producing carbon fiber, with 90% of the market depending on PAN-based polymers.
  • Traditional PAN synthesis has drawbacks, such as broad molecular weight distributions and the use of toxic solvents, while controlled radical polymerization methods struggle with low efficiency and inadequate molecular weights.
  • The study introduces an innovative aqueous photoiniferter (aqPI) polymerization technique that achieves high monomer conversion and superior PAN characteristics, enhancing control over properties vital for improved carbon fiber production.
View Article and Find Full Text PDF

Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, this work describes a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic β-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, an alkene-functionalized β-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, is devised which is then reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (≈1:0.

View Article and Find Full Text PDF

Hydrolytically degradable poly(β-thioether ester ketal) thermosets are synthesized via radical-mediated thiol-ene photopolymerization using three novel dialkene acyclic ketal monomers and a mercaptopropionate based tetrafunctional thiol. For all thermoset compositions investigated, degradation behavior is highly tunable based on the structure of the incorporated ketal and pH. Complete degradation of the thermosets is observed upon exposure to acidic and neutral pH, and under high humidity conditions.

View Article and Find Full Text PDF

The synthesis of highly water-dispersible iron oxide nanoparticles with surface functional groups and precisely controlled sizes is essential for biomedical application. In this paper, we report a one-pot strategy for versatile surface functionalization. The iron oxide nanoparticles are first synthesized by thermal decomposition of iron(III) acetylacetonate (Fe(acac)) in diethylene glycol (DEG), and their surfaces are modified by adding the surface ligands at the end of the reaction.

View Article and Find Full Text PDF

A compressive strain applied to bilayer films (e.g. thin film adhered to a thick substrate) can lead to buckled or wrinkled morphologies, which has many important applications in stretchable electronics, anti-counterfeit technology, and high-precision micro and nano-metrology.

View Article and Find Full Text PDF

Fabrication of macroporous polymers with functionally graded architecture or chemistry bears transformative potential in acoustic damping, energy storage materials, flexible electronics, and filtration but is hardly reachable with current processes. Here, we introduce thiol-ene chemistries in direct bubble writing, a recent technique for additive manufacturing of foams with locally controlled cell size, density, and macroscopic shape. Surfactant-free and solvent-free graded three-dimensional (3D) foams without drying-induced shrinkage were fabricated by direct bubble writing at an unparalleled ink viscosity of 410 cP (40 times higher than previous formulations).

View Article and Find Full Text PDF

Plant-derived aldehydes are constituents of essential oils that possess broad-spectrum antimicrobial activity and kill microorganisms without promoting resistance. In our previous study, we incorporated -anisaldehyde from star anise into a polymer network called proantimicrobial networks via degradable acetals (PANDAs) and used it as a novel drug delivery platform. PANDAs released -anisaldehyde upon a change in pH and humidity and controlled the growth of the multidrug-resistant pathogen PAO1.

View Article and Find Full Text PDF

The photocatalyst Zn(II) meso-tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) is found to substantially accelerate visible-light-initiated (red, yellow, green light) single unit monomer insertion (SUMI) of N,N-dimethylacrylamide into the reversible addition-fragmentation chain transfer (RAFT) agent, 4-((((2-carboxyethyl)thio)carbonothioyl)thio)-4-cyanopentanoic acid (RAFT ), in aqueous solution. Thus, under irradiation with red (633 nm) or yellow (593 nm) light with 50 mpm (moles per million mole of monomer) ZnTPPS at 30 °C, the rate enhancement provided by photoinduced energy or electron transfer (PET) is ≈sevenfold over the rate of direct photoRAFT-SUMI (without catalyst), which corresponds to achieving full and selective reaction in hours versus days. Importantly, the selectivity, as judged by the absence of oligomers, is retained.

View Article and Find Full Text PDF

We report a simple, rapid, and scalable strategy to fabricate surfaces exhibiting in-air superoleophobic/superhydrophilic wetting via sequential spray deposition and photopolymerization of nanoparticle-laden thiol-acrylate resins comprising both hydrophilic and oleophobic chemical constituents. The combination of spray deposition with nanoparticles provides hierarchical surface morphologies with both micro- and nanoscale roughness. Mapping the wetting behavior as a function of resin composition using high- and low-surface-tension liquid probes enabled facile identification of coatings that exhibit a range of wetting behavior, including superhydrophilic/superoleophilic, superhydrophobic/superoleophobic, and in-air superhydrophilic/superoleophobic wetting.

View Article and Find Full Text PDF

Thiolactone chemistry has garnered significant attention as a powerful post-polymerization modification (PPM) route to mutlifunctional polymeric materials. Here, we apply this versatile chemistry to the fabrication of ultrathin, multifunctional polymer surfaces via aminolysis and thiol-mediated double modifications of thiolactone-containing polymer brushes. Polymer brush surfaces were synthesized via microwave-assisted surface-initiated polymerization of DL-homocysteine thiolactone acrylamide.

View Article and Find Full Text PDF

We describe the design and synthesis of degradable, dual-release, pro-antimicrobial poly(thioether acetal) networks derived from synergistic pairs of aromatic terpene aldehydes. Initially, we identified pairs of aromatic terpene aldehyde derivatives exhibiting a synergistic antimicrobial activity against by determining fractional inhibitory concentrations. Synergistic aldehydes were converted into dialkene acetal monomers and copolymerized at various ratios with a multifunctional thiol via thiol-ene photopolymerization.

View Article and Find Full Text PDF

We report on the use of visible light as the driving force for the intramolecular dimerization of pendant anthracene groups on a methacrylic polymer to induce the formation of single-chain nanoparticles (SCNPs). Using a 532 nm green laser light source and platinum octaethylporphyrin as a sensitizer, we first demonstrated the use of TTA-UC to dimerize monomeric anthracene, and subsequently applied this concept to dilute poly((methyl methacrylate)-stat-(anthracenyl methacrylate)) samples. A combination of triple-detection size-exclusion chromatography, atomic force microscopy, and UV-visible spectroscopy confirmed the formation of the SCNPs.

View Article and Find Full Text PDF

We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using post-polymerization modification (PPM), where the length scale of the buckled features can be tuned from hundreds of nanometers to one micrometer using PPM reaction time. We show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling. Characterization of the PPM kinetics and swelling behavior via ellipsometry and the through-thickness composition profile via time-of-flight secondary ion mass spectroscopy (ToF-SIMS) provided keys insight into parameters influencing the buckling behavior.

View Article and Find Full Text PDF

Unlabelled: The synthesis of a fully degradable, bio-based, sustained release, pro-antimicrobial polymer network comprised of degradable acetals (PANDA) is reported. The active antimicrobial agent - p-anisaldehyde (pA) (an extract from star anise) - was converted into a UV curable acetal containing pro-antimicrobial monomer and subsequently photopolymerized into a homogenous thiol-ene network. Under neutral to acidic conditions (pH < 8), the PANDAs undergo surface erosion and exhibit sustained release of pA over 38 days.

View Article and Find Full Text PDF

We describe the synthesis of pro-antimicrobial networks via degradable acetals (PANDAs) as a new paradigm for sequestration and triggered release of volatile, bioactive aldehydes. PANDAs derived from diallyl -chlorobenzaldehyde acetal degrade and release -chlorobenzaldehyde as an antibacterial and antifungal agent under mild conditions (pH 7.4/high humidity).

View Article and Find Full Text PDF

Thiol-ene chemistry was exploited in droplet-based microfluidics to fabricate advanced microcapsules with tunable encapsulation, degradation, and thermal properties. In addition, by utilizing the thiol-ene photopolymerization with tunable cross-link density, we demonstrate the importance of monomer conversion on the retention of omniphilic cargo in double emulsion templated microcapsules. Furthermore, we highlight the rapid cure kinetics afforded by thiol-ene chemistry in a continuous flow photopatterning device for hemispherical microparticle production.

View Article and Find Full Text PDF

Large-scale industrial applications of barrier films and coatings that prevent permeation of degradative gases and moisture call for the development of cost-efficient and ecofriendly polymer nanocomposites. Herein, we report the facile fabrication of latex nanocomposites (LNCs) by incorporating surface-modified graphene oxide (mGO) at various loadings (0.025-1.

View Article and Find Full Text PDF

The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as "solvents" for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.

View Article and Find Full Text PDF

Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation.

View Article and Find Full Text PDF

Thiol-yne photopolymerization in miniemulsion is demonstrated as a simple, rapid, and one-pot synthetic approach to polythioether nanoparticles with tuneable particle size and clickable functionality. The strategy is also useful in the synthesis of composite polymer-inorganic nanoparticles.

View Article and Find Full Text PDF

Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such 'neutral' substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses.

View Article and Find Full Text PDF

Advances in key 21st century technologies such as biosensors, biomedical implants, and organic light-emitting diodes rely heavily on our ability to imagine, design, and understand spatially complex interfaces. Polymer-based thin films provide many advantages in this regard, but the direct synthesis of polymers with incompatible functional groups is extremely difficult. Using postpolymerization modification in conjunction with click chemistry can circumvent this limitation and result in multicomponent surfaces that are otherwise unattainable.

View Article and Find Full Text PDF

Superamphiphobic surfaces, exhibiting high contact angles and low contact angle hysteresis to both water and low surface tension liquids, have attracted a great deal attention in recent years because of the potential of these materials in practical applications such as liquid-resistant textiles, self-cleaning surfaces, and antifouling/anticorrosion coatings. In this work, we present a simple strategy for fabricating of superamphiphobic coatings based on photopolymerization of hybrid thiol-ene resins. Spray-deposition and UV photopolymerization of thiol-ene resins containing hydrophobic silica nanoparticles and perfluorinated thiols provide a multiscale topography and low-energy surface that endows the surface with superamphiphobicity.

View Article and Find Full Text PDF

We report the physical properties of thiol-ene networks modified with thiourethane or urethane linkages, either along the main chain or as a branched component in the network, respectively. Because of the robust and orthogonal nature of thiol-isocyanate and thiol-ene reactions, these networks can be formed in a two-step, one-pot synthesis. Resultant networks were characterized using dynamic mechanical analysis, mechanical testing and other complementary techniques.

View Article and Find Full Text PDF

We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionltjgh5alsdkc078vbvnh52i4i5qauduu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once