Objective: Identification of EEG waveforms is critical for diagnosing Lennox-Gastaut Syndrome (LGS) but is complicated by the progressive nature of the disease. Here, we assess the interrater reliability (IRR) among pediatric epileptologists for classifying EEG waveforms associated with LGS.
Methods: A novel automated algorithm was used to objectively identify epochs of EEG with transient high power, which were termed events of interest (EOIs).
During normal childhood development, functional brain networks evolve over time in parallel with changes in neuronal oscillations. Previous studies have demonstrated differences in network topology with age, particularly in neonates and in cohorts spanning from birth to early adulthood. Here, we evaluate the developmental changes in EEG functional connectivity with a specific focus on the first 2 years of life.
View Article and Find Full Text PDFPeople with schizophrenia often experience a profound lack of motivation for social affiliation-a facet of negative symptoms that detrimentally impairs functioning. However, the mechanisms underlying social affiliative deficits remain poorly understood, particularly under realistic social contexts. Here, we investigated subjective reports and electroencephalography (EEG) functional connectivity in schizophrenia during a live social interaction.
View Article and Find Full Text PDFObjective: Favorable neurodevelopmental outcomes in epileptic spasms (ES) are tied to early diagnosis and prompt treatment, but uncertainty in the identification of the disease can delay this process. Therefore, we investigated five categories of computational electroencephalographic (EEG) measures as markers of ES.
Methods: We measured 1) amplitude, 2) power spectra, 3) Shannon entropy and permutation entropy, 4) long-range temporal correlations, via detrended fluctuation analysis (DFA) and 5) functional connectivity using cross-correlation and phase lag index (PLI).
Int J Psychophysiol
September 2020
The disconnection hypothesis of schizophrenia says that symptoms are explained by dysfunctional connections across a wide range of brain networks. Despite some support for this hypothesis, there have been mixed findings. One reason for these may be the multidimensional nature of schizophrenia symptoms.
View Article and Find Full Text PDFObjective: Functional connectivity networks (FCNs) based on interictal electroencephalography (EEG) can identify pathological brain networks associated with epilepsy. FCNs are altered by interictal epileptiform discharges (IEDs), but it is unknown whether this is due to the morphology of the IED or the underlying pathological activity. Therefore, we characterized the impact of IEDs on the FCN through simulations and EEG analysis.
View Article and Find Full Text PDF