The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism , as well as major human pathogens including and . Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species.
View Article and Find Full Text PDFTo kill bacteria, bacteriophages (phages) must first bind to a receptor, triggering the release of the phage DNA into the bacterial cell. Many bacteria secrete polysaccharides that had been thought to shield bacterial cells from phage attack. We use a comprehensive genetic screen to distinguish that the capsule is not a shield but is instead a primary receptor enabling phage predation.
View Article and Find Full Text PDFThe production of capsular polysaccharides by Klebsiella pneumoniae protects the bacterial cell from harmful environmental factors such as antimicrobial compounds and infection by bacteriophages (phages). To bypass this protective barrier, some phages encode polysaccharide-degrading enzymes referred to as depolymerases to provide access to cell surface receptors. Here, we characterized the phage RAD2, which infects K.
View Article and Find Full Text PDFCapsular polysaccharides enable clinically important clones of to cause severe systemic infections in susceptible hosts. Phage-encoded capsule depolymerases have the potential to provide an alternative treatment paradigm in patients when multiple drug resistance has eroded the efficacy of conventional antibiotic chemotherapy. An investigation of 164 K from intensive care patients in Thailand revealed a large number of distinct K types in low abundance but four (K2, K51, K1, K10) with a frequency of at least 5%.
View Article and Find Full Text PDF: Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in .
View Article and Find Full Text PDFBackground: Extended spectrum beta lactamase (ESBL)-producing extraintestinal pathogenic infections are of global interest because of their clinical and economic impact. The ESBL resistance genes disseminate through plasmids, and are found in successful global lineages such as ST131 and ST648. The carriage of plasmids has been suggested to result in a fitness burden, but recently it was shown that ESBL-plasmids enhanced virulence in pandemic ST131 and ST648 lineages without affecting their fitness.
View Article and Find Full Text PDFThe majority of isolates that are multiply, extensively and pan-antibiotic resistant belong to two globally disseminated clones, GC1 and GC2, that were first noticed in the 1970s. Here, we investigated microevolution and phylodynamics within GC1 via analysis of 45 whole-genome sequences, including 23 sequenced for this study. The most recent common ancestor of GC1 arose around 1960 and later diverged into two phylogenetically distinct lineages.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2016
Background: The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children.
View Article and Find Full Text PDFAtypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively.
View Article and Find Full Text PDFPathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E.
View Article and Find Full Text PDFThe emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years.
View Article and Find Full Text PDFTwo lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage.
View Article and Find Full Text PDFOne of the main hurdles for the development of an effective and broadly protective vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the species, which renders extremely difficult the identification of cross-protective candidate antigens. To assess whether a population structure of NTHi could be defined, we performed genome sequencing of a collection of diverse clinical isolates representative of both carriage and disease and of the diversity of the natural population. Analysis of the distribution of polymorphic sites in the core genome and of the composition of the accessory genome defined distinct evolutionary clades and supported a predominantly clonal evolution of NTHi, with the majority of genetic information transmitted vertically within lineages.
View Article and Find Full Text PDFHere, we report the genome sequence of nematicidal Bacillus thuringiensis DB27, which provides first insights into the genetic determinants of its pathogenicity to nematodes. The genome consists of a 5.7-Mb chromosome and seven plasmids, three of which contain genes encoding nematicidal proteins.
View Article and Find Full Text PDFProteins exhibiting hyper-variable sequences within a bacterial pathogen may be associated with host adaptation. Several lineages of the monophyletic pathogen Salmonella enterica serovar Typhi (S. Typhi) have accumulated non-synonymous mutations in the putative two-component regulatory system yehUT.
View Article and Find Full Text PDFAvian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases.
View Article and Find Full Text PDFEpidemic C. difficile (027/BI/NAP1) has rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key events in evolutionary history leading to its emergence and the subsequent patterns of global spread remain unknown.
View Article and Find Full Text PDFRelapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed dysbiosis, which remains poorly understood. We show that mice infected with epidemic C.
View Article and Find Full Text PDFShigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery(1,2), spreading efficiently via low-dose fecal-oral transmission(3,4). Historically, S. sonnei has been predominantly responsible for dysentery in developed countries but is now emerging as a problem in the developing world, seeming to replace the more diverse Shigella flexneri in areas undergoing economic development and improvements in water quality(4-6).
View Article and Find Full Text PDFClostridium difficile is a major cause of chronic antibiotic-associated diarrhea and a significant health care-associated pathogen that forms highly resistant and infectious spores. Spo0A is a highly conserved transcriptional regulator that plays a key role in initiating sporulation in Bacillus and Clostridium species. Here, we use a murine model to study the role of the C.
View Article and Find Full Text PDFBackground: Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem especially in developing countries. Vaccines against typhoid are commonly used by travelers but less so by residents of endemic areas.
View Article and Find Full Text PDF