Publications by authors named "Derek Homeier"

Exoplanets that orbit close to their host stars are much more highly irradiated than their solar system counterparts. Understanding the thermal structures and appearances of these planets requires investigating how their atmospheres respond to such extreme stellar forcing. We present spectroscopic thermal emission measurements as a function of orbital phase ("phase-curve observations") for the highly irradiated exoplanet WASP-43b spanning three full planet rotations using the Hubble Space Telescope.

View Article and Find Full Text PDF

Recent surveys have revealed that planets intermediate in size between Earth and Neptune ('super-Earths') are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b (refs 7 - 17), but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere.

View Article and Find Full Text PDF

GJ 436b is a warm--approximately 800 kelvin--exoplanet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a ratio of methane to carbon monoxide that is 10(5) times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet's atmosphere is significantly enhanced in elements heavier than hydrogen and helium.

View Article and Find Full Text PDF

In contrast to planets with masses similar to that of Jupiter and higher, the bulk compositions of planets in the so-called super-Earth regime (masses 2-10 times that of the Earth) cannot be uniquely determined from a measurement of mass and radius alone. For these planets, there is a degeneracy between the mass and composition of both the interior and a possible atmosphere in theoretical models. The recently discovered transiting super-Earth exoplanet GJ 1214b is one example of this problem.

View Article and Find Full Text PDF