Purpose: Gastroesophageal reflux disease (GERD) is a widely prevalent condition. High consumption of dairy foods and dietary fat are associated with worse GERD symptoms. However, existing data are inconsistent and mostly based on observational studies.
View Article and Find Full Text PDFBackground: Plasma phospholipid pentadecanoic acid (C15:0), heptadecanoic acid (C17:0), and trans-palmitoleic acid (trans-C16:1n-7) are correlates of dairy fat intake. However, their relative concentrations may be influenced by other endogenous factors, such as liver fat content, and their validity as biomarkers of dairy fat intake has yet to be established.
Objectives: We investigated whether liver fat content modifies relations between concentrations of C15:0, C17:0, and trans-C16:1n-7 (alone and in combination with iso-C17:0) and known dairy fat intake in the context of a randomized controlled intervention study.
Background: Dietary guidelines traditionally recommend low-fat dairy because dairy's high saturated fat content is thought to promote cardiovascular disease (CVD). However, emerging evidence indicates that dairy fat may not negatively impact CVD risk factors when consumed in foods with a complex matrix.
Objective: The aim was to compare the effects of diets limited in dairy or rich in either low-fat or full-fat dairy on CVD risk factors.
Background: Serum 25-hydroxyvitamin D [25(OH)D] concentration is an indicator of vitamin D exposure, but it is also influenced by clinical characteristics that affect 25(OH)D production and clearance. Vitamin D is the precursor to 25(OH)D but is analytically challenging to measure in biological specimens.
Objectives: We aimed to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantification of vitamins D3 and D2 in serum and to explore the potential of circulating vitamin D as a biomarker of exposure in supplementation trials.
Background: Dairy foods, particularly yogurt, and plasma biomarkers of dairy fat intake are consistently inversely associated with incident type 2 diabetes. Yet, few trials assessing the impact of dairy on glucose homeostasis include fermented or full-fat dairy foods.
Objectives: We aimed to compare the effects of diets rich in low-fat or full-fat milk, yogurt, and cheese on glucose tolerance and its determinants, with those of a limited dairy diet.
Background: Intestinal permeability and adipose tissue inflammation are considered mechanistic links in the relationship between diet, obesity, and chronic disease. However, methods to measure both are not well standardized, and the reliability of commonly used measures is not known.
Methods: We calculated the intraclass correlation coefficient (ICC) for several common measures of intestinal permeability and adipose tissue inflammation from a randomized clinical trial of cross-over design in which normal-weight ( = 12) or overweight/obese ( = 12) individuals each completed three 8-day dietary intervention periods.
The objective of this comprehensive review is to summarize and discuss the available evidence of how adipose tissue inflammation affects insulin sensitivity and glucose tolerance. Low-grade, chronic adipose tissue inflammation is characterized by infiltration of macrophages and other immune cell populations into adipose tissue, and a shift toward more proinflammatory subtypes of leukocytes. The infiltration of proinflammatory cells in adipose tissue is associated with an increased production of key chemokines such as C-C motif chemokine ligand 2, proinflammatory cytokines including tumor necrosis factor α and interleukins 1β and 6 as well as reduced expression of the key insulin-sensitizing adipokine, adiponectin.
View Article and Find Full Text PDFFructose-, compared to glucose-, sweetened beverages increase liver triglyceride content in the short-term, prior to weight gain. In secondary analyses of a randomized cross-over design study during which 24 healthy adults consumed 25% of their estimated energy requirement in the form of glucose-, fructose-, and high-fructose corn syrup-sweetened beverages in addition to an identical ad libitum diet for three periods of 8 days each, we investigated the hypothesis that fructose in sweetened beverages also triggers insulin resistance in the short term. Total energy intake, body weight, and fasting glucose did not differ among diet phases.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2017
Male hypogonadism results in changes in body composition characterized by increases in fat mass. Resident immune cells influence energy metabolism in adipose tissue and could promote increased adiposity through paracrine effects. We hypothesized that manipulation of circulating sex steroid levels in healthy men would alter adipose tissue immune cell populations.
View Article and Find Full Text PDFContext: The mechanisms mediating the short- and long-term improvements in glucose homeostasis following bariatric/metabolic surgery remain incompletely understood.
Objective: To investigate whether a reduction in adipose tissue inflammation plays a role in the metabolic improvements seen after bariatric/metabolic surgery, both in the short-term and longer-term.
Design: Fasting blood and subcutaneous abdominal adipose tissue were obtained before (n=14), at one month (n=9), and 6-12months (n=14) after bariatric/metabolic surgery from individuals with obesity who were not on insulin or anti-diabetes medication.
Background: Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease.
Objective: We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight.
Objective: Type 2 diabetes commonly goes into remission following Roux-en-Y gastric bypass (RYGB). As the mechanisms remain incompletely understood, a reduction in adipose tissue inflammation may contribute to these metabolic improvements. Therefore, whether RYGB reduces adipose tissue inflammation compared with equivalent weight loss from an intensive lifestyle intervention was investigated.
View Article and Find Full Text PDFBackground: Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs.
View Article and Find Full Text PDFAdipose tissue macrophage (ATM)-driven inflammation plays a key role in insulin resistance; however, factors activating ATMs are poorly understood. Using a proteomics approach, we show that markers of classical activation are absent on ATMs from obese humans but are readily detectable on airway macrophages of patients with cystic fibrosis, a disease associated with chronic bacterial infection. Moreover, treating macrophages with glucose, insulin, and palmitate-conditions characteristic of the metabolic syndrome-produces a "metabolically activated" phenotype distinct from classical activation.
View Article and Find Full Text PDFMacrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance.
View Article and Find Full Text PDFRecent studies have indicated that omega-3 (n3) polyunsaturated fatty acids (PUFAs) decrease adipose tissue inflammation in rodents and in morbidly obese humans. We investigated whether a diet rich in n3 PUFAs from both marine and plant sources reduces adipose tissue and systemic inflammation in overweight to moderately obese adults. We conducted a randomized, single-blind, parallel-design, placebo-controlled feeding trial.
View Article and Find Full Text PDFAdipose tissue plays a role in obesity-related cancers via increased production of inflammatory factors, steroid hormones, and altered adipokines. The impact of weight loss on adipose tissue gene expression may provide insights into pathways linking obesity with cancer risk. We conducted an ancillary study within a randomized trial of diet, exercise, or combined diet + exercise versus control among overweight/obese postmenopausal women.
View Article and Find Full Text PDFAdipose tissue inflammation is a major mechanistic link between obesity and chronic disease. To isolate and characterize specific leukocyte populations, e.g.
View Article and Find Full Text PDFPancreatic β-cells have a well-developed endoplasmic reticulum due to their highly specialized secretory function to produce insulin in response to glucose and nutrients. It has been previously reported that overexpression of activating transcription factor 6 (ATF6) reduces insulin gene expression in part via upregulation of small heterodimer partner. In this study, we investigated whether ATF6 directly binds to the insulin gene promoter, and whether its direct binding represses insulin gene promoter activity.
View Article and Find Full Text PDFUnlabelled: Prolonged exposure of pancreatic beta-cells to elevated levels of glucose and fatty acids adversely affects insulin secretion and gene expression.
Aim: To examine whether the GLP-1 agonist exenatide or the inhibitor of the GLP-1-degrading enzyme dipeptidyl peptidase 4 (DPP-4) sitagliptin rescue insulin gene expression in rats infused for 72h with glucose+Intralipid, independently from their glucose-lowering action.
Methods: Wistar rats were infused alternatively with glucose or Intralipid for cycles of 4h each for a total of 72h.
The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and fatty acid levels on pancreatic beta-cell function and survival. Significant progress has been made in recent years towards a better understanding of the cellular and molecular basis of glucolipotoxicity in the beta cell. The permissive effect of elevated glucose on the detrimental actions of fatty acids stems from the influence of glucose on intracellular fatty acid metabolism, promoting the synthesis of cellular lipids.
View Article and Find Full Text PDFObjective: Prolonged exposure of pancreatic beta-cells to simultaneously elevated levels of fatty acids and glucose (glucolipotoxicity) impairs insulin gene transcription. However, the intracellular signaling pathways mediating these effects are mostly unknown. This study aimed to ascertain the role of extracellular-regulated kinases (ERKs)1/2, protein kinase B (PKB), and Per-Arnt-Sim kinase (PASK) in palmitate inhibition of insulin gene expression in pancreatic beta-cells.
View Article and Find Full Text PDFThe level of the MafA transcription factor is regulated by a variety of effectors of beta cell function, including glucose, fatty acids, and insulin. Here, we show that phosphorylation at Ser(65) of mammalian MafA influences both protein stability and transactivation potential. Replacement of Ser(65) with Glu to mimic phosphorylation produced a protein that was as unstable as the wild type, whereas Asp or Ala mutation blocked degradation.
View Article and Find Full Text PDFObjective: Prolonged exposure of isolated islets of Langerhans to elevated levels of fatty acids, in the presence of high glucose, impairs insulin gene expression via a transcriptional mechanism involving nuclear exclusion of pancreas-duodenum homeobox-1 (Pdx-1) and loss of MafA expression. Whether such a phenomenon also occurs in vivo is unknown. Our objective was therefore to ascertain whether chronic nutrient oversupply inhibits insulin gene expression in vivo.
View Article and Find Full Text PDFThe insulin gene is expressed almost exclusively in pancreatic beta-cells. Metabolic regulation of insulin gene expression enables the beta-cell to maintain adequate stores of intracellular insulin to sustain the secretory demand. Glucose is the major physiologic regulator of insulin gene expression; it coordinately controls the recruitment of transcription factors [e.
View Article and Find Full Text PDF