This study investigated the influence of biosolid applications on soil carbon storage and evaluated nutrient management strategies affecting soil carbon dynamics. The research assessed alterations in soil pH, soil carbon stock, and soil nitrogen content within short-term and long-term biosolids-amended soils in Bible Hill, Nova Scotia, Canada, extending to a depth of 0-60 cm. The findings indicated an increase in soil pH with alkaline treatment biosolids (ATB) applications across both study sites, with a legacy effect on soil pH noted in the long-term biosolids-amended soil following a single ATB application over 13 years.
View Article and Find Full Text PDFSoil phosphorus (P) cycling in agroecosystems is highly complex, with many chemical, physical, and biological processes affecting the availability of P to plants. Traditionally, P fertilizer recommendations have been made using an insurance-based approach, which has resulted in the accumulation of P in many intensively managed agricultural soils worldwide and contributed to the widespread water quality issue of eutrophication. To mitigate further environmental degradation and because future P fertilizer supplies are threatened due to finite phosphate rock resources and associated geopolitical and quality issues, there is an immediate need to increase P use efficiency (PUE) in agroecosystems.
View Article and Find Full Text PDF