For both the incorporation of cells and future therapeutic applications the sterility of a biomaterial must be ensured. However, common sterilisation techniques are intense and often negatively impact on material physicochemical attributes, which can affect its suitability for tissue engineering and 3D printing. In the present study four sterilisation methods, autoclave, supercritical CO (scCO) treatment, UV- and gamma (γ) irradiation were evaluated regarding their impact on material properties and cellular responses.
View Article and Find Full Text PDFAdditive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions.
View Article and Find Full Text PDFThe activity of the colon is regulated by chemical signaling, of which serotonin (5-HT) is a key transmitter. Monitoring of mucosal 5-HT overflow has been achieved to date using microelectrodes on a small segment of colonic tissue; however, little is known if such measurements are reflective with regards to 5-HT signaling from the entire colon. This study focused on developing an electrochemical array device that could be utilized to conduct multisite measurements of 5-HT overflow from the entire colon.
View Article and Find Full Text PDFUnderstanding the three-dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un-embalmed donor was scanned through high-resolution computed tomography. The scan data underwent segmentation and post-processing and a range of 3D-printed anatomical models were produced.
View Article and Find Full Text PDFVarious investigations have focused on understanding the relationship between mucosal serotonin (5-HT) and colonic motility, however contradictory studies have questioned the importance of this intestinal transmitter. Here we described the fabrication and use of a fecal pellet electrochemical sensor that can be used to simultaneously detect the release of luminal 5-HT and colonic motility. Fecal pellet sensor devices were fabricated using carbon nanotube composite electrodes that were housed in 3D printed components in order to generate a device that had shape and size that mimicked a natural fecal pellet.
View Article and Find Full Text PDF