Phys Rev Lett
December 2017
We propose using the frequency-domain bootstrap (FDB) to estimate errors of modeling parameters when the modeling error is itself a major source of uncertainty. Unlike the usual bootstrap or the simple χ^{2} analysis, the FDB can take into account correlations between errors. It is also very fast compared to the Gaussian process Bayesian estimate as often implemented for computer model calibration.
View Article and Find Full Text PDFBackground: Carcinogenic risks of internal exposures to alpha-emitters (except radon) are poorly understood. Since exposure to alpha particles-particularly through inhalation-occurs in a range of settings, understanding consequent risks is a public health priority. We aimed to quantify dose-response relationships between lung dose from alpha-emitters and lung cancer in nuclear workers.
View Article and Find Full Text PDFThe Alpha-Risk study required the reconstruction of doses to lung and red bone marrow for lung cancer and leukaemia cases and their matched controls from cohorts of nuclear workers in the UK, France and Belgium. The dosimetrists and epidemiologists agreed requirements regarding the bioassay data, biokinetic and dosimetric models and dose assessment software to be used and doses to be reported. The best values to use for uncertainties on the monitoring data, setting of exposure regimes and characteristics of the exposure material, including lung solubility, were the responsibility of the dosimetrist responsible for each cohort.
View Article and Find Full Text PDFThe potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2017
In this paper we present a method for predicting the rendering time to display multi-dimensional data for the analysis of computer simulations using the HyperSlice [36] method with Gaussian process model reconstruction. Our method relies on a theoretical understanding of how the data points are drawn on slices and then fits the formula to a user's machine using practical experiments. We also describe the typical characteristics of data when analyzing deterministic computer simulations as described by the statistics community.
View Article and Find Full Text PDFWe asked if the higher work of breathing (Wb) during exercise in women compared with men is explained by biological sex. We created a statistical model that accounts for both the viscoelastic and the resistive components of the total Wb and independently compares the effects of biological sex. We applied the model to esophageal pressure-derived Wb values obtained during an incremental cycle test to exhaustion.
View Article and Find Full Text PDFA real-time internal dose assessment exercise has been conducted in which participants were required to make decisions about sampling requirements, seek relevant information about the 'incident' and make various interim dose assessments. At the end of the exercise, each participant was requested to make a formal assessment, providing statements of the methods, models and assumptions used in that assessment. In this paper we describe how the hypothetical assessment case was set up and the exercise was conducted, the responses of the participants and the assessments of dose that they made.
View Article and Find Full Text PDF