Publications by authors named "Derek B Leinweber"

Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent.

View Article and Find Full Text PDF

For almost 50 years the structure of the Λ(1405) resonance has been a mystery. Even though it contains a heavy strange quark and has odd parity, its mass is lower than any other excited spin-1/2 baryon. Dalitz and co-workers speculated that it might be a molecular state of an antikaon bound to a nucleon.

View Article and Find Full Text PDF

The odd-parity ground state of the Λ baryon lies surprisingly low in mass. At 1405 MeV, it lies lower than the odd-parity ground-state nucleon, even though it has a valence strange quark. Using the PACS-CS (2+1)-flavor full-QCD ensembles, we employ a variational analysis using source and sink smearing to isolate this elusive state.

View Article and Find Full Text PDF