Publications by authors named "Derek B J Bone"

Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with βadrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective β-adrenergic receptor agonist.

View Article and Find Full Text PDF

Objective: The goal of this study was to determine the glucometabolic effects of acute activation of G signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis.

Methods: To address this question, we studied mice that express a G-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two G-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (β-adrenergic receptor and CRF receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively).

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) form a superfamily of plasma membrane receptors that couple to four major families of heterotrimeric G proteins, G, G, G, and G. GPCRs represent excellent targets for drug therapy. Since the individual GPCRs are expressed by many different cell types, the in vivo metabolic roles of a specific GPCR expressed by a distinct cell type are not well understood.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) has become a major health problem worldwide. Skeletal muscle (SKM) is the key tissue for whole-body glucose disposal and utilization. New drugs aimed at improving insulin sensitivity of SKM would greatly expand available therapeutic options.

View Article and Find Full Text PDF

Skeletal muscle (SKM) insulin resistance plays a central role in the pathogenesis of type 2 diabetes. Because G-protein-coupled receptors (GPCRs) represent excellent drug targets, we hypothesized that activation of specific functional classes of SKM GPCRs might lead to improved glucose homeostasis in type 2 diabetes. At present, little is known about the in vivo metabolic roles of the various distinct GPCR signaling pathways operative in SKM.

View Article and Find Full Text PDF

Aims: Signalling via Gq-coupled receptors is of profound importance in many cardiac diseases such as hypertrophy and arrhythmia. Nevertheless, owing to their widespread expression and the inability to selectively stimulate such receptors in vivo, their relevance for cardiac function is not well understood. We here use DREADD technology to understand the role of Gq-coupled signalling in vivo in cardiac function.

View Article and Find Full Text PDF

Purine nucleosides and nucleobases play key roles in the physiological response to vascular ischemia/reperfusion events. The intra- and extracellular concentrations of these compounds are controlled, in part, by equilibrative nucleoside transporter subtype 1 (ENT1; SLC29A1) and by equilibrative nucleobase transporter subtype 1 (ENBT1). These transporters are expressed at the membranes of numerous cell types including microvascular endothelial cells.

View Article and Find Full Text PDF

Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory spondyloarthropathy, characterized by ectopic calcification of spinal tissues. Symptoms include spine pain and stiffness, and in severe cases dysphagia and spinal cord compression. The etiology of DISH is unknown and there are no specific treatments.

View Article and Find Full Text PDF

Nucleoside and nucleobase uptake is integral to mammalian cell function, and its disruption has significant effects on the cardiovasculature. The predominant transporters in this regard are the equilibrative nucleoside transporter subtypes 1 (ENT1) and 2 (ENT2). To examine the role of ENT1 in more detail, we have assessed the mechanisms by which microvascular endothelial cells (MVECs) from ENT1(-/-) mice transport and metabolize nucleosides and nucleobases.

View Article and Find Full Text PDF

Mammalian cells require specific transport mechanisms for the cellular uptake and release of endogenous nucleosides such as adenosine, and nucleoside analogs used in chemotherapy. We have identified a novel splice variant of the mouse equilibrative nucleoside transporter, mENT1, that results from the exclusion of exon 11 during pre-RNA processing. This variant encodes a truncated protein (mENT1Delta11) missing the last three transmembrane domains of the full-length mENT1.

View Article and Find Full Text PDF

The cardioprotective actions of adenosine are terminated by its uptake into endothelial cells with subsequent metabolism through hypoxanthine to uric acid. This process involves xanthine oxidase-mediated generation of reactive oxygen species (ROS), which have been implicated in the vascular dysfunction observed in ischemia-reperfusion injury. The equilibrative nucleoside transporter, ENT2, mediates the transfer of hypoxanthine into cells.

View Article and Find Full Text PDF

Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a V(max) of 3.

View Article and Find Full Text PDF

Nucleosides are accumulated by cells via a family of equilibrative transport proteins (ENTs). An alternative splice variant of the most common subtype of mouse ENT (ENT1) has been identified which is missing a protein kinase CK2 (casein kinase 2) consensus site (Ser(254)) in the central intracellular loop of the protein. We hypothesized that this variant (mENT1a) would be less susceptible to modulation by CK2-mediated phosphorylation compared to the variant containing the serine at position 254 (mENT1b).

View Article and Find Full Text PDF