Publications by authors named "Derek Albracht"

The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues.

View Article and Find Full Text PDF

Background: Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.

View Article and Find Full Text PDF

Mammalian sex chromosomes are the remnants of an ancient autosomal pair present in the ancestral mammalian karyotype. As a consequence of random decay and chromosome rearrangements over evolutionary time, Y chromosome gene repertoires differ between eutherian lineages. To investigate the gene repertoire and transcriptional analysis of the domestic cat Y chromosome, and their potential roles in spermatogenesis, we obtained full-length cDNA sequences for all known Y genes and their X chromosome gametologues and used those sequences to create a BAC-based physical map of the X-degenerate region.

View Article and Find Full Text PDF

Strategies for assembling large, complex genomes have evolved to include a combination of whole-genome shotgun sequencing and hierarchal map-assisted sequencing. Whole-genome maps of all types can aid genome assemblies, generally starting with low-resolution cytogenetic maps and ending with the highest resolution of sequence. Fingerprint clone maps are based upon complete restriction enzyme digests of clones representative of the target genome, and ultimately comprise a near-contiguous path of clones across the genome.

View Article and Find Full Text PDF

As part of the effort to sequence the genome of Rattus norvegicus, we constructed a physical map comprised of fingerprinted bacterial artificial chromosome (BAC) clones from the CHORI-230 BAC library. These BAC clones provide approximately 13-fold redundant coverage of the genome and have been assembled into 376 fingerprint contigs. A yeast artificial chromosome (YAC) map was also constructed and aligned with the BAC map via fingerprinted BAC and P1 artificial chromosome clones (PACs) sharing interspersed repetitive sequence markers with the YAC-based physical map.

View Article and Find Full Text PDF