Publications by authors named "Derda R"

Genetically encoded libraries (GEL) are increasingly being used for the discovery of ligands for "undruggable" targets that cannot be addressed with small molecules. Foundational GEL platforms like phage-, yeast-, ribosome-, and mRNA-display have enabled the display of libraries composed of 20 natural amino acids (20AA). Unnatural amino acids (UAA) and chemical post-translational modification (cPTM) expanded GEL beyond the 20AA space to yield unnatural linear, cyclic, and bicyclic peptides.

View Article and Find Full Text PDF
Article Synopsis
  • Selective detection of changes in the glycocalyx is a growing area in targeted therapies, focusing on identifying small alterations in cell surface glycans.
  • The study introduces a DNA-barcoded phage system, LiLA, which uses multivalent lectin displays to recognize subtle glycan density variations on normal and cancer cells effectively.
  • This innovative approach allows better in situ detection of glycocalyx differences in cancer stem cells compared to current technologies, highlighting its potential for improved disease monitoring and treatment strategies.
View Article and Find Full Text PDF

Glycans constitute a significant fraction of biomolecular diversity on cellular surfaces across all kingdoms of life. As the structure of glycans is not directly encoded by the organism's DNA, it is impossible to use high-throughput DNA technologies to study the role of cellular glycosylation or to understand how glycocalyx is recognized by glycan-binding proteins (GBPs). To address this gap, we recently described a liquid glycan array (LiGA) platform that allows profiling of glycan-GBP interactions on the surface of live cells in vitro and in vivo using next-generation sequencing.

View Article and Find Full Text PDF

Occult nodal spread and metastatic disease require longstanding imaging and biochemical assessments for thyroid cancer, a disease that has a propensity for diffuse, small-volume disease. We have developed a Cu-labeled platelet-derived growth factor receptor α (PDGFRA) antibody for immuno-PET of PDGFRA in metastatic papillary thyroid cancer (PTC). The present work describes the discovery of small cyclic PDGFRA-targeting peptides, their binding features, and radiolabeling with positron emitter gallium-68 (Ga) for characterization in thyroid cancer models.

View Article and Find Full Text PDF

The M13 phage platform is a stable and monodisperse nanoscale carrier, which can be modified with different molecules by chemical conjugation strategies. Here, we describe M13 phage acylated on pVIII protein with a dibenzocyclooctyne reacting with azido glycan to yield 30-1500 copy numbers of glycan per phage and monitored by MALDI-TOF spectrometry to generate multivalent glycoconjugates that contain desired densities of glycans. We prepared the liquid glycan arrays (LiGA) such that both the structure and density of glycans were encoded in the DNA of the bacteriophage.

View Article and Find Full Text PDF

The modification of nucleocytoplasmic proteins by -linked N-acetylglucosamine (-GlcNAc) is an important regulator of cell physiology. -GlcNAc is installed on over a thousand proteins by just one enzyme, -GlcNAc transferase (OGT). How OGT is regulated is therefore a topic of interest.

View Article and Find Full Text PDF

Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence.

View Article and Find Full Text PDF

Cellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne.

View Article and Find Full Text PDF

Microglia are immune-derived cells critical to the development and healthy function of the brain and spinal cord, yet are implicated in the active pathology of many neuropsychiatric disorders. A range of functional phenotypes associated with the healthy brain or disease states has been suggested from in vivo work and were modeled in vitro as surveying, reactive, and primed sub-types of primary rat microglia and mixed microglia/astrocytes. It was hypothesized that the biomolecular profile of these cells undergoes a phenotypical change as well, and these functional phenotypes were explored for potential novel peptide binders using a custom 7 amino acid-presenting M13 phage library (SX7) to identify unique peptides that bind differentially to these respective cell types.

View Article and Find Full Text PDF

Immunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer.

View Article and Find Full Text PDF

Advances in diagnostics, therapeutics, vaccines, transfusion, and organ transplantation build on a fundamental understanding of glycan-protein interactions. To aid this, we developed GlyNet, a model that accurately predicts interactions (relative binding strengths) between mammalian glycans and 352 glycan-binding proteins, many at multiple concentrations. For each glycan input, our model produces 1257 outputs, each representing the relative interaction strength between the input glycan and a particular protein sample.

View Article and Find Full Text PDF

Phage display links the phenotype of displayed polypeptides with the DNA sequence in the phage genome and offers a universal method for the discovery of proteins with novel properties. However, the display of large multisubunit proteins on phages remains a challenge. A majority of protein display systems are based on monovalent phagemid constructs, but methods for the robust display of multiple copies of large proteins are scarce.

View Article and Find Full Text PDF

The Wittig reaction can be used for late stage functionalization of proteins and peptides to ligate glycans, pharmacophores, and many other functionalities. In this manuscript, we modified 160 000 N-terminal glyoxaldehyde peptides displayed on phage with the Wittig reaction by using a biotin labeled ylide under conditions that functionalize only 1% of the library population. Deep-sequencing of the biotinylated and input populations estimated the rate of conversion for each sequence.

View Article and Find Full Text PDF

Small molecules, peptide macrocycles, and protein conjugates that reversibly turn their function on and off in response to visible light enabled the fields of photopharmacology and optochemical genetics. In this chapter, we describe a method for the synthesis of light-responsive (LR) macrocycles from linear peptides composed of 20 natural amino acids. Bioactive LR molecules can be produced by grafting azobenzene or other LR-structures onto molecules with known biological functions (e.

View Article and Find Full Text PDF

In this manuscript, we developed a two-fold symmetric linchpin () that converts readily available phage-displayed peptides libraries made of 20 common amino acids to genetically-encoded libraries of bicyclic peptides displayed on phage. combines an aldehyde-reactive group and two thiol-reactive groups; it bridges two side chains of cysteine [C] with an N-terminal aldehyde group derived from the N-terminal serine [S], yielding a novel bicyclic topology that lacks a free N-terminus. Phage display libraries of SXCXXXXXXC sequences, where X is any amino acid but Cys, were converted to a library of bicyclic -[S]X[C]XXXXXX[C] peptides in 45 ± 15% yield.

View Article and Find Full Text PDF

The central dogma of biology does not allow for the study of glycans using DNA sequencing. We report a liquid glycan array (LiGA) platform comprising a library of DNA 'barcoded' M13 virions that display 30-1,500 copies of glycans per phage. A LiGA is synthesized by acylation of the phage pVIII protein with a dibenzocyclooctyne, followed by ligation of azido-modified glycans.

View Article and Find Full Text PDF

Genetically encoded macrocyclic peptide libraries with unnatural pharmacophores are valuable sources for the discovery of ligands for many targets of interest. Traditionally, generation of such libraries employs "early stage" incorporation of unnatural building blocks into the chemically or translationally produced macrocycles. Here, we describe a divergent late-stage approach to such libraries starting from readily available starting material: genetically encoded libraries of peptides.

View Article and Find Full Text PDF

Glycan interactions with glycan-binding proteins (GBPs) play essential roles in a wide variety of cellular processes. Currently, the glycan specificities of GBPs are most often inferred from binding data generated using glycan arrays, wherein the GBP is incubated with oligosaccharides immobilized on a glass surface. Detection of glycan-GBP binding is typically fluorescence-based, involving the labeling of the GBP with a fluorophore or with biotin, which binds to fluorophore-labeled streptavidin, or using a fluorophore-labeled antibody that recognizes the GBP.

View Article and Find Full Text PDF

This opinion describes recent advances of molecular discovery technology dubbed Genetically Encoded Fragment-Based Discovery (GE-FBD). GE-FBD starts from a known ligand or 'fragment' that binds to a desired target weakly and often with low specificity. Covalent incorporation of fragment into a diverse, genetically encoded library of peptides yields a library of peptide-fragment combinations.

View Article and Find Full Text PDF

In this manuscript, we developed a screening system that employs the difference in density between liquid water and ice (0.9998 g/cm vs 0.9168 g/cm at 0 °C) to identify ice-nucleating agents (INAs) that are encapsulated into droplets of water suspended in silicone oil of intermediate density (0.

View Article and Find Full Text PDF

Peptide-derived drugs constitute a significant fraction of therapeutic agents. In 2013, The global market of peptide therapeutics was ca. $19 billion; this value does not include revenue from insulin derivatives of $28 million.

View Article and Find Full Text PDF

We have employed genetically-encoded fragment-based discovery to identify novel glycopeptides with affinity for the dendritic cell receptor DC-SIGN. Starting from libraries of 10 mannose-conjugated peptides, we identified glycopeptides that exhibited up to a 650-fold increase in multivalent binding affinity for DC-SIGN, which is also preserved in cells. Monovalently, our most potent glycopeptides have a similar potency to a Man oligosaccharide, representing a 15-fold increase in activity compared to mannose.

View Article and Find Full Text PDF

Background: Peptide-Fc fusion drugs, also known as peptibodies, are a category of biological therapeutics in which the Fc region of an antibody is genetically fused to a peptide of interest. However, to develop such kind of drugs is laborious and expensive. Rational design is urgently needed.

View Article and Find Full Text PDF