Publications by authors named "Dercksen V"

We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments.

View Article and Find Full Text PDF

Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains.

View Article and Find Full Text PDF

Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance.

View Article and Find Full Text PDF

Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution.

View Article and Find Full Text PDF

Neuroanatomical analysis, such as classification of cell types, depends on reliable reconstruction of large numbers of complete 3D dendrite and axon morphologies. At present, the majority of neuron reconstructions are obtained from preparations in a single tissue slice in vitro, thus suffering from cut off dendrites and, more dramatically, cut off axons. In general, axons can innervate volumes of several cubic millimeters and may reach path lengths of tens of centimeters.

View Article and Find Full Text PDF

Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses.

View Article and Find Full Text PDF

The three-dimensional (3D) structure of neural circuits represents an essential constraint for information flow in the brain. Methods to directly monitor streams of excitation, at subcellular and millisecond resolution, are at present lacking. Here, we describe a pipeline of tools that allow investigating information flow by simulating electrical signals that propagate through anatomically realistic models of average neural networks.

View Article and Find Full Text PDF

We present a novel approach for automated detection of neuron somata. A three-step processing pipeline is described on the example of confocal image stacks of NeuN-stained neurons from rat somato-sensory cortex. It results in a set of position landmarks, representing the midpoints of all neuron somata.

View Article and Find Full Text PDF

Analysis of gene expression in the developing barley caryopsis requires effective instruments for visualization of the grain and the 3D expression patterns. Digital models of developing barley (Hordeum vulgare) grains were reconstructed from serial sections to visualize the complex three-dimensional (3D) grain anatomy, to generate and analyse 3D expression patterns, and to quantify tissues during growth. The models provide detailed spatial descriptions of developing grains at anthesis, at the syncytial stage of endosperm development and at the onset of starch accumulation, visualizing and quantifying 18 tissues or tissue complexes.

View Article and Find Full Text PDF

This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.

View Article and Find Full Text PDF