Nuclear receptor receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor and has been established as a key player in castration-resistant prostate cancers (CRPC) by driving androgen receptor (AR) overexpression, representing a potential therapeutical target for advanced prostate cancers. Here, we report the identification of the first-in-class RORγ covalent inhibitor via the structure-based drug design approach following structure-activity relationship (SAR) exploration. Mass spectrometry assay validated its covalent inhibition mechanism.
View Article and Find Full Text PDFSH2 domains have been recognized as promising targets for various human diseases. However, targeting SH2 domains with phosphopeptides or small-molecule inhibitors derived from bioisosteres of the phosphate group is still challenging. Identifying novel bioisosteres of the phosphate group to achieve favorable potency is urgently needed.
View Article and Find Full Text PDFPRMT5 is a major type II protein arginine methyltransferase and plays important roles in diverse cellular processes. Overexpression of PRMT5 is implicated in various types of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors, the most potent of which is usually derived from nucleoside structures.
View Article and Find Full Text PDFEpigenetic regulation of gene expression plays a critical role in various physiological processes, and epigenetic dysregulation is implicated in a number of diseases, prominently including cancer. Epigenetic regulators have been validated as potential therapeutic targets, and significant progress has been made in the discovery and development of epigenetic-based inhibitors. However, successful epigenetic drug discovery is still facing challenges, including moderate selectivity, limited efficacy, and acquired drug resistance.
View Article and Find Full Text PDFCurr Top Med Chem
November 2019
PPIs are involved in diverse biochemical events and perform their functions through the formation of protein-protein complexes or PPI networks. The large and flat interacting surfaces of PPIs make discovery of small-molecule modulators a challenging task. New strategies and more effective chemical technologies are needed to facilitate the development of PPIs small-molecule inhibitors.
View Article and Find Full Text PDF