Publications by authors named "Deprez M"

Background: Motion correction methods based on slice-to-volume registration (SVR) for fetal magnetic resonance imaging (MRI) allow reconstruction of three-dimensional (3-D) isotropic images of the fetal brain and body. However, all existing SVR methods are confined to research settings, which limits clinical integration. Furthermore, there have been no reported SVR solutions for low-field 0.

View Article and Find Full Text PDF

Objectives: Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.

Methods: A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI.

View Article and Find Full Text PDF

Purpose: To determine the expected range of NMR relaxation times (T and T) in the neonatal brain at 7 T.

Methods: Data were acquired in a total of 40 examinations on infants in natural sleep. The cohort included 34 unique subjects with postmenstrual age range between 33 and 52 weeks and contained a mix of healthy individuals and those with clinical concerns.

View Article and Find Full Text PDF
Article Synopsis
  • - Low field fetal MRI (0.55T) offers advantages like fewer imaging artifacts and accessibility for larger patients, but lacks automated processing tools for broader clinical adoption.
  • - The study introduces the FOREST pipeline, which effectively analyzes ten fetal organs using advanced imaging techniques and has been validated for quality.
  • - Findings show a significant relationship between T2* values of most organs and gestational age, suggesting that low field MRI can provide valuable insights for normal and pathological fetal assessments.
View Article and Find Full Text PDF

Objectives: Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated landmark propagation pipeline using 3D motion-corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.

Methods: A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI.

View Article and Find Full Text PDF

Cortical gyrification takes place predominantly during the second to third trimester, alongside other fundamental developmental processes, such as the development of white matter connections, lamination of the cortex and formation of neural circuits. The mechanistic biology that drives the formation cortical folding patterns remains an open question in neuroscience. In our previous work, we modelled the in utero diffusion signal to quantify the maturation of microstructure in transient fetal compartments, identifying patterns of change in diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester.

View Article and Find Full Text PDF

Purpose: We propose a quantitative framework for motion-corrected T2 fetal brain measurements in vivo and validate the single-shot fast spin echo (SS-FSE) sequence to perform these measurements.

Methods: Stacks of two-dimensional SS-FSE slices are acquired with different echo times (TE) and motion-corrected with slice-to-volume reconstruction (SVR). The quantitative T2 maps are obtained by a fit to a dictionary of simulated signals.

View Article and Find Full Text PDF

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs.

View Article and Find Full Text PDF

This study explores the potential of 3D Slice-to-Volume Registration (SVR) motion-corrected fetal MRI for craniofacial assessment, traditionally used only for fetal brain analysis. In addition, we present the first description of an automated pipeline based on 3D Attention UNet trained for 3D fetal MRI craniofacial segmentation, followed by surface refinement. Results of 3D printing of selected models are also presented.

View Article and Find Full Text PDF

Introduction: Ultra-high field MR imaging offers marked gains in signal-to-noise ratio, spatial resolution, and contrast which translate to improved pathological and anatomical sensitivity. These benefits are particularly relevant for the neonatal brain which is rapidly developing and sensitive to injury. However, experience of imaging neonates at 7T has been limited due to regulatory, safety, and practical considerations.

View Article and Find Full Text PDF

Objectives: To compare mean pulmonary T2* values and pulmonary volumes in fetuses that subsequently spontaneously delivered before 32 weeks with a control cohort with comparable gestational ages and to assess the value of mean pulmonary T2* as a predictor of preterm birth < 32 weeks' gestation.

Methods: MRI datasets scanned at similar gestational ages were selected from fetuses who spontaneously delivered < 32 weeks of gestation and a control group who subsequently delivered at term with no complications. All women underwent a fetal MRI on a 3 T MRI imaging system.

View Article and Find Full Text PDF

Calmodulin-binding transcriptional activator 1 (CAMTA1) is highly expressed in the brain and plays a role in cell cycle regulation, cell differentiation, regulation of long-term memory, and initial development, maturation, and survival of cerebellar neurons. The existence of human neurological phenotypes, including cerebellar dysfunction with variable cognitive and behavioral abnormalities (CECBA), associated with CAMTA1 variants, has further supported its role in brain functions. In this study, we phenotypically and molecularly characterize the largest cohort of individuals (n = 26) with 23 novel CAMTA1 variants (frameshift-7, nonsense-6, splicing-1, initiation codon-1, missense-5, and intragenic deletions-3) and compare the findings with all previously reported cases (total = 53).

View Article and Find Full Text PDF
Article Synopsis
  • Spontaneous preterm birth before 32 weeks affects 1% of all deliveries and is linked to significant health risks, primarily associated with chorioamnionitis, which currently has no effective noninvasive prenatal testing options.
  • This study focused on using magnetic resonance imaging (MRI) to analyze fetal adrenal gland volumes in high-risk patients, aiming to establish normal adrenal volume ranges and compare them with those who experienced very preterm birth.
  • Findings revealed that while adrenal volumes were similar between groups, the ratio of adrenal to body volume was higher in the preterm group, and this difference persisted even with chorioamnionitis present, suggesting a potential link between adrenal development and preterm birth risks.
View Article and Find Full Text PDF

Background: Congenital heart disease (CHD) is common and is associated with impaired early brain development and neurodevelopmental outcomes, yet the exact mechanisms underlying these associations are unclear.

Purpose: To utilize MRI data from a cohort of fetuses with CHD as well as typically developing fetuses to test the hypothesis that expected cerebral substrate delivery is associated with total and regional fetal brain volumes.

Study Type: Retrospective case-control study.

View Article and Find Full Text PDF

Fetal Magnetic Resonance Imaging at low field strengths is emerging as an exciting direction in perinatal health. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artefacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population).

View Article and Find Full Text PDF

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs.

View Article and Find Full Text PDF

Fetal MRI is widely used for quantitative brain volumetry studies. However, currently, there is a lack of universally accepted protocols for fetal brain parcellation and segmentation. Published clinical studies tend to use different segmentation approaches that also reportedly require significant amounts of time-consuming manual refinement.

View Article and Find Full Text PDF

The MIR449 genomic locus encompasses several regulators of multiciliated cell (MCC) formation (multiciliogenesis). The miR-449 homologs miR-34b/c represent additional regulators of multiciliogenesis that are transcribed from another locus. Here, we characterized the expression of BTG4, LAYN, and HOATZ, located in the MIR34B/C locus using single-cell RNA-seq and super-resolution microscopy from human, mouse, or pig multiciliogenesis models.

View Article and Find Full Text PDF

Increasing lines of evidence suggest deviations from the normal early developmental trajectory could give rise to the onset of schizophrenia during adolescence and young adulthood, but few studies have investigated brain imaging changes associated with schizophrenia common variants in neonates. This study compared the brain volumes of both grey and white matter regions with schizophrenia polygenic risk scores (PRS) for 207 healthy term-born infants of European ancestry. Linear regression was used to estimate the relationship between PRS and brain volumes, with gestational age at birth, postmenstrual age at scan, ancestral principal components, sex and intracranial volumes as covariates.

View Article and Find Full Text PDF

Background: The mainstay of assessment of the fetal lungs in clinical practice is via evaluation of pulmonary size, primarily using 2D ultrasound and more recently with anatomical magnetic resonance imaging. The emergence of advanced magnetic resonance techniques such as T2* relaxometry in combination with the latest motion correction post-processing tools now facilitates assessment of the metabolic activity or perfusion of fetal pulmonary tissue in vivo.

Objective: This study aimed to characterize normal pulmonary development using T2* relaxometry, accounting for fetal motion across gestation.

View Article and Find Full Text PDF

Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism.

View Article and Find Full Text PDF

Fetal Magnetic Resonance Imaging at low field strengths is emerging as an exciting direction in perinatal health. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artefacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population).

View Article and Find Full Text PDF

Background: Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability.

Methods: In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy.

View Article and Find Full Text PDF