Publications by authors named "Deping Hua"

Background: Anthocyanins are water-soluble flavonoids in plants, which give plants bright colors and are widely used as food coloring agents, nutrients, and cosmetic additives. There are several limitations for traditional techniques of collecting anthocyanins from plant tissues, including species, origin, season, and technology. The benefits of using engineering microbial production of natural products include ease of use, controllability, and high efficiency.

View Article and Find Full Text PDF

Anthocyanins are high-value natural compounds, but to date, their production still mainly relies on extraction from plants. A five-step metabolic pathway was constructed in probiotic Lactococcus lactis NZ9000 for rapid, stable, and glycosylated anthocyanin biosynthesis using chalcone as a substrate. The genes were cloned from anthocyanin-rich blueberry: chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and UDPG-flavonoid 3-O-glycosyltransferase (3GT).

View Article and Find Full Text PDF

Infectious bursal disease (IBD), as a highly infectious immunosuppressive disease, causes severe economic losses in the poultry industry worldwide. is an appealing vehicle used in oral vaccine formulations to safely and effectively deliver heterologous antigens. It can elicit systemic and mucosal responses.

View Article and Find Full Text PDF

Hydropericardium-hepatitis syndrome (HHS) caused by fowl adenovirus (FAdV) serotype 4 strains is a highly contagious disease that causes significant economic loss to the global poultry industry. However, subunit vaccine against FAdV-4 infection is not yet commercially available to date. This study aims to explore the potential for oral immunization of recombinant Saccharomyces cerevisiae expressing Fiber-2 of FAdV-4 as a subunit vaccine.

View Article and Find Full Text PDF

Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2).

View Article and Find Full Text PDF

African swine fever virus (ASFV) infects domestic pigs and European wild boars with strong, hemorrhagic and high mortality. The primary cellular targets of ASFV is the porcine macrophages. Up to now, no commercial vaccine or effective treatment available to control the disease.

View Article and Find Full Text PDF

In the early stage of virus infection, the pattern recognition receptor (PRR) signaling pathway of the host cell is activated to induce interferon production, activating interferon-stimulated genes (ISGs) that encode antiviral proteins that exert antiviral effects. Viperin is one of the innate antiviral proteins that exert broad-spectrum antiviral effects by various mechanisms. Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes huge losses to the pig industry.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe systemic inflammation. Based on transcriptome sequencing data, a new cold-inducible RNA-binding protein (CIRBP) was identified, and its upregulated expression was detected in PRRSV-infected porcine alveolar macrophages (PAMs). However, the immunoregulatoryeffect of CIRBP in PRRSV infection remains unclear.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) and the Polycomb group proteins have key roles in regulating plant growth and development; however, their interplay and underlying mechanisms are not fully understood. Here, we identified an Arabidopsis () nodulin homeobox (AtNDX) protein as a negative regulator in the ABA signaling pathway. AtNDX mutants are hypersensitive to ABA, as measured by inhibition of seed germination and root growth, and the expression of is downregulated by ABA.

View Article and Find Full Text PDF

REV7, also termed mitotic arrest-deficient 2-like 2 (MAD2L2 or MAD2B), acts as an interaction module in a broad array of cellular pathways, including translesion DNA synthesis, cell cycle control, and nonhomologous end joining. Numerous REV7 binding partners have been identified, including the human small GTPase Ras-associated nuclear protein (RAN), which acts as a potential upstream regulator of REV7. Notably, the invasin IpaB hijacks REV7 to disrupt cell cycle control to prevent intestinal epithelial cell renewal and facilitate bacterial colonization.

View Article and Find Full Text PDF

Small, secreted signaling peptides that are perceived by receptor-like kinases (RLKs) constitute an important regulatory mechanism in plant organ formation and stem cell maintenance. However, functional redundancy at the level of both ligand and receptor families often makes it difficult to clearly discern the role of individual members by a genetic approach. Here, we show that driven by a constitutive CaMV 35S promoter, a truncated BAM protein (BAMΔ) that lacks either the signal peptide (SP) or the cytoplasmic kinase (Ki) domain could cause defective shoot apical meristem (SAM) maintenance, which phenotypically resembled the triple bam mutant.

View Article and Find Full Text PDF

Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella.

View Article and Find Full Text PDF

Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH.

View Article and Find Full Text PDF

Unlabelled: The human immunodeficiency virus type 1 (HIV-1)-encoded virion infectivity factor (Vif) is required to inactivate the host restriction factor APOBEC3 by engaging Cullin 5 (Cul5)-RING ubiquitin ligase (CRL5). Core binding factor beta (CBF-β) is a novel regulator of Vif-CRL5 function; as yet, its mechanism of regulation remains unclear. In the present study, we demonstrate that CBF-β promotion of Vif-CRL5 assembly is independent of its influence on Vif stability and is also a conserved feature of primate lentiviral Vif proteins.

View Article and Find Full Text PDF

The plant hormone abscisic acid (ABA) regulates stomatal movement under drought stress, and this regulation requires hydrogen peroxide (H2O2). We isolated GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), which encodes a receptor-like kinase localized on the plasma membrane in Arabidopsis thaliana. ghr1 mutants were defective ABA and H2O2 induction of stomatal closure.

View Article and Find Full Text PDF

It is well known that abscisic acid (ABA) promotes reactive oxygen species (ROS) production through plasma membrane-associated NADPH oxidases during ABA signaling. However, whether ROS from organelles can act as second messengers in ABA signaling is largely unknown. Here, we identified an ABA overly sensitive mutant, abo6, in a genetic screen for ABA-mediated inhibition of primary root growth.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment.

View Article and Find Full Text PDF

Elongator is a histone acetyl-transferase complex consisting of six subunits, and is highly conserved in eukaryotic organisms. Here, we isolated two novel mutants, elp2 and elp6, during a genetic screening for ABA-hypersensitive Arabidopsis mutants. Map-based cloning identified ELP2 and ELP6, which encode the orthologs of the yeast Elongator subunits, ELP2 and ELP6, respectively.

View Article and Find Full Text PDF