Publications by authors named "Depil S"

Over the last decade, the annual Immunorad Conference, held under the joint auspicies of Gustave Roussy (Villejuif, France) and the Weill Cornell Medical College (New-York, USA) has aimed at exploring the latest advancements in the fields of tumor immunology and radiotherapy-immunotherapy combinations for the treatment of cancer. Gathering medical oncologists, radiation oncologists, physicians and researchers with esteemed expertise in these fields, the Immunorad Conference bridges the gap between preclinical outcomes and clinical opportunities. Thus, it paves a promising way toward optimizing radiotherapy-immunotherapy combinations and, from a broader perspective, improving therapeutic strategies for patients with cancer.

View Article and Find Full Text PDF

Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3.

View Article and Find Full Text PDF

Endogenous retroelements (EREs), which comprise half of the human genome, play a pivotal role in genome dynamics. Some EREs retained the ability to encode proteins, although most degenerated or served as a source for novel genes and regulatory elements during evolution. Despite ERE repression mechanisms developed to maintain genome stability, widespread pervasive ERE activation is observed in cancer including hematological malignancies.

View Article and Find Full Text PDF

Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities.

View Article and Find Full Text PDF

Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers.

View Article and Find Full Text PDF

T cell engineering has changed the landscape of cancer immunotherapy. Chimeric antigen receptor T cells have demonstrated a remarkable efficacy in the treatment of B cell malignancies in hematology. However, their clinical impact on solid tumors has been modest so far.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) remains a very difficult disease to cure due to the persistence of leukemic stem cells (LSCs), which are resistant to different lines of chemotherapy and are the basis of refractory/relapsed (R/R) disease in 80% of patients with AML not receiving allogeneic transplantation.

Methods: In this study, we showed that the interleukin-1 receptor accessory protein (IL-1RAP) protein is overexpressed on the cell surface of LSCs in all subtypes of AML and confirmed it as an interesting and promising target in AML compared with the most common potential AML targets, since it is not expressed by the normal hematopoietic stem cell. After establishing the proof of concept for the efficacy of chimeric antigen receptor (CAR) T-cells targeting IL-1RAP in chronic myeloid leukemia, we hypothesized that third-generation IL-1RAP CAR T-cells could eliminate AML LSCs, where the medical need is not covered.

View Article and Find Full Text PDF

Human endogenous retroviruses (HERVs) represent 8% of the human genome. The expression of HERVs and their immune impact have not been extensively studied in Acute Myeloid Leukemia (AML). In this study, we used a reference of 14 968 HERV functional units to provide a thorough analysis of HERV expression in normal and AML bone marrow cells.

View Article and Find Full Text PDF

Background: Cancer vaccines and T-cell receptor (TCR) engineered T cells (Tg-T cell) represent two different therapeutic strategies that can target the same tumour epitopes. The first approach requires the induction of a specific immune response in patients, while the second relies on the efficacy of adoptively transferred T cells. Because the ratio of antigen-specific T cells to tumour cells engaged by these strategies may influence the clinical outcome, we evaluated the efficacy of these two therapeutic approaches in solid tumours according to the tumour burden.

View Article and Find Full Text PDF

Human endogenous retroviruses (HERVs) represent 8% of the human genome. HERV products may represent tumor antigens relevant for cancer immunotherapy. We developed a bioinformatic approach to identify shared CD8 T cell epitopes derived from cancer-associated HERVs in solid tumors.

View Article and Find Full Text PDF

In solid tumors, adoptive T cell therapies based on ex vivo amplification of antitumor T cell are represented by three main complementary approaches : (i) tumor infiltrating lymphocytes (TILs) which are amplified in vitro before reinjection to the patient, (ii) chimeric antigen receptor (CAR) engineered T cells and (iii) T cell receptor (TCR) engineered T cells. Despite encouraging results, some obstacles remain, such as optimal target selection and tumor microenvironment. In this Review, we discuss pros and cons of these different therapeutic strategies that may open new perspectives in the treatment of solid tumors.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy represents a major breakthrough in the field of hematology. "Off-the-shelf" allogeneic CAR T-cells from donors have many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches, possible standardization of the cell product, time for multiple cell modifications, redosing and decreased cost. However, allogeneic T-cells possess foreign immunological identities that can lead to graft-versus-host disease (GvHD) and their rejection by the host immune system.

View Article and Find Full Text PDF

Human Endogenous Retroviruses (HERVs) are accounting for 8% of the human genome. These sequences are remnants from ancient germline infections by exogenous retroviruses. After million years of evolution and multiple integrations, HERVs have acquired many damages rendering them defective.

View Article and Find Full Text PDF

Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system.

View Article and Find Full Text PDF

Endowing chimeric antigen receptor (CAR) T cells with additional potent functionalities holds strong potential for improving their antitumor activity. However, because potency could be deleterious without control, these additional features need to be tightly regulated. Immune pathways offer a wide array of tightly regulated genes that can be repurposed to express potent functionalities in a highly controlled manner.

View Article and Find Full Text PDF

Although immune checkpoint-targeted therapies are currently revolutionizing cancer care, only a minority of patients develop durable objective responses to anti-PD-1, PD-L1, and CTLA-4 therapy. Therefore, new therapeutic interventions are needed to increase the immunogenicity of tumors and overcome the resistance to these immunotherapies. Oncolytic properties of common viruses can be exploited for the priming of antitumor immunity, and such oncolytic viruses are currently in active clinical development in combination with immune checkpoint-targeted therapies.

View Article and Find Full Text PDF

Background: Engineered therapeutic cells have attracted a great deal of interest due to their potential applications in treating a wide range of diseases, including cancer and autoimmunity. Chimeric antigen receptor (CAR) T-cells are designed to detect and kill tumor cells that present a specific, predefined antigen. The rapid expansion of targeted antigen beyond CD19, has highlighted new challenges, such as autoactivation and T-cell fratricide, that could impact the capacity to manufacture engineered CAR T-cells.

View Article and Find Full Text PDF

Netrin-1 is upregulated in a large fraction of human neoplasms. In multiple animal models, interference with netrin-1 is associated with inhibition of tumor growth and metastasis. Although netrin-1 upregulation was initially described in cancer cells, we report here that in the human colorectal cancer database, the expression of netrin-1 and its receptor UNC5B correlates with a cancer-associated fibroblasts (CAF) signature.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR T-cell) therapy has been shown to be clinically effective for managing a variety of hematological cancers. However, CAR T-cell therapy is associated with multiple adverse effects, including neurotoxicity and cytokine release syndrome (CRS). CRS arises from massive cytokine secretion and can be life-threatening, but it is typically managed with an anti-IL-6Ra mAb or glucocorticoid administration.

View Article and Find Full Text PDF