Purpose: This study aimed to analyze black tattoo inks by means of energy dispersive spectroscopy and backscattered scanning electron microscopy.
Methods: The sample consisted of five types of commercial tattoo pigments of the black colour (Easy Glow, Electric Ink, Iron Works, Master Ink, and Viper). An Energy Dispersive Spectroscopy (EDS) detector (Silicon Drift Detector - SDD - type) attached to a Scanning Electron Microscope (SEM) device (Tescan Vega3 LMU, Libusina, Czech Republic) was used.
This study presents a novel approach for the simultaneous detection of ascorbic acid (AA) and dopamine (DA) using an affordable and user-friendly microfluidic device. Microfluidic devices, when combined with electrochemical detectors like screen-printed electrodes (SPEs), offer numerous advantages such as portability, high sample throughput, and low reagent consumption. In this study, a 3D-printed microfluidic device called a μTED was developed, utilizing textile threads as microfluidic channels and an unmodified SPE as the amperometric detector.
View Article and Find Full Text PDFThe use of biological components in the development of new methods of analysis and point-of-care (POC) devices is an ever-expanding theme in analytical chemistry research, due to the immense potential for early diagnosis of diseases and monitoring of biomarkers. In the present work, the evaluation of an electrochemical microfluidic device based on the immobilization of horseradish peroxidase (HRP) enzyme into chemically treated cotton threads is described. This bioreactor was used as a channel for the build of the microfluidic device, which has allowed to use of a non-modified screen-printed electrode (SPE) as an amperometric detector.
View Article and Find Full Text PDFMicrofluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads.
View Article and Find Full Text PDFThe tear glucose analysis is an important alternative for the indirect, simple and less invasive monitoring of blood glucose levels. However, the high cost and complex manufacturing process of tear glucose analyzers combined with the need to exchange the sensor after each analysis in the disposable tests prevent widespread application of the tear in glucose monitoring. Here, we present the integration of a biosensor made by the electropolymerization of poly(toluidine blue O) (PTB) and glucose oxidase (GOx) with an electroanalytical microfluidic device of easy assembly based on cotton threads, low cost materials and measurements by microflow injection analysis (µFIA) through passive pumping for performing tear glucose analyses in a simple, rapid and inexpensive way.
View Article and Find Full Text PDFThe micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way.
View Article and Find Full Text PDFMicrofluidic devices are an interesting alternative for performing analytical assays, due to the speed of analyses, reduced sample, reagent and solvent consumption and less waste generation. However, the high manufacturing costs still prevent the massive use of these devices worldwide. Here, we present the construction of a low cost microfluidic thread-based electroanalytical device (μTED), employing extremely cheap materials and a manufacturing process free of equipment.
View Article and Find Full Text PDFA simple and sensitive electroanalytical method was developed for determination of nanomolar levels of Pb(II) based on the voltammetric stripping response at a carbon paste electrode modified with biochar (a special charcoal) and bismuth nanostructures (nBi-BchCPE). The proposed methodology was based on spontaneous interactions between the highly functionalized biochar surface and Pb(II) ions followed by reduction of these ions into bismuth nanodots which promote an improvement on the stripping anodic current. The experimental procedure could be summarized in three steps: including an open circuit pre-concentration, reduction of accumulated lead ions at the electrode surface and stripping step under differential pulse voltammetric conditions (DPAdSV).
View Article and Find Full Text PDF