This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which has a higher thermal spectrum than the legs or trunk. The CS-LBP feature is then extracted from the luminance saliency map of a hotspot and applied to the RF classifier, which is an ensemble of randomized decision trees.
View Article and Find Full Text PDF