ACS Appl Mater Interfaces
October 2024
In this study, we prepared a hybrid film incorporating the MnFeO-decorated conducting two-dimensional (2D) MXene sheet-suspended [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) electron transfer layer (ETL) for the perovskite solar cells (PSCs) and detectors. The incorporation of MXene-MnFeO with the PCBM ETL could drive exceptional conducting features for the PSCs. Moreover, the presence of MXene-MnFeO facilitated superior charge transfer pathways, thereby enhancing the electron extraction and collection processes.
View Article and Find Full Text PDFSince two-dimensionalal (2D) materials have distinct chemical and physical properties, they are widely used in various sectors of modern technologies. In the domain of diagnostic biodevices, particularly for point-of-care (PoC) biomedical diagnostics, 2D-based field-effect transistor biosensors (bio-FETs) demonstrate substantial potential. Here, in this review article, the operational mechanisms and detection capabilities of biosensing devices utilizing graphene, transition metal dichalcogenides (TMDCs), black phosphorus, and other 2D materials are addressed in detail.
View Article and Find Full Text PDFHierarchical porous nanowire-like MoS/CoNiO nanohybrids were synthesized via the hydrothermal process. CoNiO nanowires were selected due to the edge site, high surface/volume ratio, and superior electrochemical characteristics as the porous backbone for decoration of layered MoS nanoflakes to construct innovative structure hierarchical three-dimensional (3D) porous NWs MoS/CoNiO hybrids with excellent charge accumulation and efficient ion transport capabilities. Physicochemical analyses were conducted on the developed hybrid composite, revealing conclusive evidence that the CoNiO nanowires have been securely anchored onto the surface of the MoS nanoflake array.
View Article and Find Full Text PDFThe rise in universal population and accompanying demands have directed toward an exponential surge in the generation of polymeric waste. The estimate predicts that world-wide plastic production will rise to ≈590 million metric tons by 2050, whereas 5000 million more tires will be routinely abandoned by 2030. Handling this waste and its detrimental consequences on the Earth's ecosystem and human health presents a significant challenge.
View Article and Find Full Text PDFControlling and preventing Cu oxidation is crucial for improving the performance and reliability of Cu-Cu bonding. Ni-B films were selectively deposited on Cu films to block the Cu oxidation. The resistivity changes of the Cu films in Nand Oambient were measured by using a four-point probe in thetemperature-dependent resistance measurements at the temperature from room temperature to 400 °C.
View Article and Find Full Text PDFResistive random-access memory (RRAMs) has attracted significant interest for their potential applications in embedded storage and neuromorphic computing. Materials based on metal chalcogenides have emerged as promising candidates for the fulfilment of these requirements. Due to its ability to manipulate electronic states and control trap states through controlled compositional dynamics, metal chalcogenide RRAM has excellent non-volatile resistive memory properties.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDs) have gained significant attention as next-generation semiconductor materials that could potentially overcome the integration limits of silicon-based electronic devices. However, a challenge in utilizing TMDs as semiconductors is the lack of an established PN doping method to effectively control their electrical properties, unlike those of silicon-based semiconductors. Conventional PN doping methods, such as ion implantation, can induce lattice damage in TMDs.
View Article and Find Full Text PDFThe exclusive features of two-dimensional (2D) semiconductors, such as high surface-to-volume ratios, tunable electronic properties, and biocompatibility, provide promising opportunities for developing highly sensitive biosensors. However, developing practical biosensors that can promptly detect low concentrations of target analytes remains a challenging task. Here, a field-effect-transistor comprising n-type transition metal dichalcogenide tin disulfide (SnS ) is developed over the hexagonal boron nitride (h-BN) for the detection of streptavidin protein (Strep.
View Article and Find Full Text PDFPhotosensitive polyimides (PSPIs) have been widely developed in microelectronics, which is due to their excellent thermal properties and reasonable dielectric properties and can be directly patterned to simplify the processing steps. In this study, 3 μm~7 μm thick PSPI films were deposited on different substrates, including Si, 50 nm SiN, 50 nm SiO, 100 nm Cu, and 100 nm Al, for the optimization of the process of integration with Cu films. In situ temperature-dependent resistance measurements were conducted by using a four-point probe system to study the changes in resistance of the 70 nm thick Cu films on different dielectrics with thick diffusion films of 30 nm Mn, Co, and W films in a N ambient.
View Article and Find Full Text PDFIn the quest for high-density integration and massive scalability, ferroelectric-based devices provide an achievable approach for nonvolatile crossbar array (CBA) architecture and neuromorphic computing. In this report, ferroelectric-semiconductor (Pt/BaTiO/ZnO/Au) heterojunction-based devices are demonstrated to exhibit nonvolatile and synaptic characteristics. In this study, the ferroelectric (BaTiO) layer was modulated at various growth temperatures of 350 °C, 450 °C, 550 °C and 650 °C.
View Article and Find Full Text PDFSince the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications.
View Article and Find Full Text PDFTo avoid the complexity of the circuit for in-memory computing, simultaneous execution of multiple logic gates (OR, AND, NOR, and NAND) and memory behavior are demonstrated in a single device of oxygen plasma-treated gallium selenide (GaSe) memtransistor. Resistive switching behavior with R /R ratio in the range of 10 to 10 is obtained depending on the channel length (150 to 1600 nm). Oxygen plasma treatment on GaSe film created shallow and deep-level defect states, which exhibit carriers trapping/de-trapping, that lead to negative and positive photoconductance at positive and negative gate voltages, respectively.
View Article and Find Full Text PDFWith the current evolution in the artificial intelligence technology, more biomimetic functions are essential to execute increasingly complicated tasks and respond to challenging work environments. Therefore, an artificial nociceptor plays a significant role in the advancement of humanoid robots. Organic-inorganic halide perovskites (OHPs) have the potential to mimic the biological neurons due to their inherent ion migration.
View Article and Find Full Text PDFVan der Waals (vdW) heterostructures composed of atomically thin two-dimensional (2D) materials have more potential than conventional metal-oxide semiconductors because of their tunable bandgaps, and sensitivities. The remarkable features of these amazing vdW heterostructures are leading to multi-functional logic devices, atomically thin photodetectors, and negative differential resistance (NDR) Esaki diodes. Here, an atomically thin vdW stacking composed of p-type black arsenic (b-As) and n-type tin disulfide (n-SnS ) to build a type-III (broken gap) heterojunction is introduced, leading to a negative differential resistance device.
View Article and Find Full Text PDFHerein, we synthesized the zinc oxide (ZnO) thin films (TFs) deposited on glass substrates via spray pyrolysis (SP) to prepare self-cleaning glass. Various process parameters were used to optimize photocatalytic performance. Substrates were coated at room temperature (RT) and 250 °C with a 1 mL or 2 mL ZnO solution while maintaining a distance from the spray gun to the substrate of 20 cm or 30 cm.
View Article and Find Full Text PDFTwo-terminal, non-volatile memory devices are the fundamental building blocks of memory-storage devices to store the required information, but their lack of flexibility limits their potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible memory devices are easy to build, because of their flexible nature. Here, we report on our flexible resistive-switching devices, composed of a bilayer tin-oxide/tungsten-ditelluride (SnO/WTe) heterostructure sandwiched between Ag (top) and Au (bottom) metal electrodes over a flexible PET substrate.
View Article and Find Full Text PDFDye-sensitized solar cells (DSSCs) are one of the most versatile and low-cost solar cells. However, DSSCs are prone to low power conversion efficiency (PCE) compared to their counterparts, owing to their different synthesis parameters and process conditions. Therefore, designing efficient DSSCs and identifying the parameters that control the PCE of DSSCs are a critical tasks.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2021
Organic nonvolatile memory devices have a vital role for the next generation of electrical memory units, due to their large scalability and low-cost fabrication techniques. Here, we show bipolar resistive switching based on an Ag/ZnO/P3HT-PCBM/ITO device in which P3HT-PCBM acts as an organic heterojunction with inorganic ZnO protective layer. The prepared memory device has consistent DC endurance (500 cycles), retention properties (10 s), high ON/OFF ratio (10), and environmental stability.
View Article and Find Full Text PDFThe diversity of brain functions depend on the release of neurotransmitters in chemical synapses. The back gated three terminal field effect transistors (FETs) are auspicious candidates for the emulation of biological functions to recognize the proficient neuromorphic computing systems. In order to encourage the hysteresis loops, we treated the bottom side of MoTe flake with deep ultraviolet light in ambient conditions.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2020
In this study, the dominant role of the top electrode is presented for NbO-based devices to demonstrate either the resistive switching or threshold characteristics. These NbO-based devices may exhibit different characteristics depending on the selection of electrode. The use of the inert electrode (Au) initiates resistive switching characteristics in the Au/NbO/Pt device.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal dichalcogenides have attracted vibrant interest for future solid-state device applications due to their unique properties. However, it is challenging to realize 2D material based high performance complementary devices due to the stubborn Fermi level pinning effect and the lack of facile doping techniques. In this paper, we reported a hybrid Gr/Ni contact to WS2, which can switch carrier types from n-type to p-type in WS2.
View Article and Find Full Text PDFInfrared (IR) polarimetric imaging has attracted attention as a promising technology in many fields. Generally, superpixels consisting of linear polarizer elements at different angles plus IR imaging array are used to obtain the polarized target signature by using the detected polarization-sensitive intensities. However, the spatial arrangement of superpixels across the imaging array may lead to an incorrect polarimetric signature of a target, due to the range of angles from which the incident radiation can be collected by the detector.
View Article and Find Full Text PDFThe algorithmic spectrometry as an alternative to traditional approaches has the potential to become the next generation of infrared (IR) spectral sensing technology, which is free of physical optical filters, and only a very small number of data are required from the IR detector. A key requirement is that the detector spectral responses must be engineered to create an optimal basis that efficiently synthesizes spectral information. Light manipulation through metal perforated with a two-dimensional square array of subwavelength holes provides remarkable opportunities to harness the detector response in a way that is incorporated into the detector.
View Article and Find Full Text PDFVertical integration of two dimensional (2D) layered materials is indispensable in making van der Waals (vdWs) heterostructures for promising electronic and optoelectronic devices. Herein, we report excellent electrical and photoelectrical measurements where the current ON & OFF ratio of FET is increased by decreasing the temperature in the graphene/ReSe/graphene heterojunction. We investigated the photoresponsivity in broad spectral range (UV-Vis-NIR) and achieved high photoresponsivity of 1.
View Article and Find Full Text PDFTwo-dimensional (2D) layered materials have an atomically thin and flat nature which makes it an ultimate candidate for spintronic devices. The spin-valve junctions (SVJs), composed of 2D materials, have been recognized as unique features of spin transport polarization. However, the magnetotransport properties of SVJs are highly influenced by the type of intervening layer (spacer) inserted between the ferromagnetic materials (FMs).
View Article and Find Full Text PDF