Publications by authors named "Deok-Hoon Kong"

Pancreatic adenocarcinoma upregulated factor (PAUF) was initially identified as a secreted protein that is substantially expressed in pancreatic ductal adenocarcinoma (PDAC). PAUF also affects invasiveness, motility, and the proliferation of cells in several types of cancer. Recently, PAUF was reported to play a pivotal role in the TLR4-mediated migration and invasion of PDAC cells.

View Article and Find Full Text PDF

Backgruound: Nonalcoholic steatohepatitis (NASH) is a liver disease caused by obesity that leads to hepatic lipoapoptosis, resulting in fibrosis and cirrhosis. However, the mechanism underlying NASH is largely unknown, and there is currently no effective therapeutic agent against it. DWN12088, an agent used for treating idiopathic pulmonary fibrosis, is a selective prolyl-tRNA synthetase (PRS) inhibitor that suppresses the synthesis of collagen.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that triggers the expression of inflammatory molecules, including other cytokines and cell adhesion molecules. TNFα induces the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 (VCAM-1). VCAM-1 was originally identified as a cell adhesion molecule that helps regulate inflammation-associated vascular adhesion and the transendothelial migration of leukocytes, such as macrophages and T cells.

View Article and Find Full Text PDF

Tumor angiogenesis is a key event that governs tumor progression and metastasis. It is controlled by the complicated and coordinated actions of pro-angiogenic factors and their receptors that become upregulated during tumorigenesis. Over the past several decades, vascular endothelial growth factor (VEGF) signaling has been identified as a central axis in tumor angiogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Protein kinases are crucial for various cellular functions through the process of adding phosphate groups to proteins, and identifying their substrate proteins helps us understand their roles in health and disease.
  • Despite their importance, systematic research on protein kinase substrates has been limited due to the challenges in conducting high-throughput kinetic assays.
  • To address this, researchers developed a new on-chip assay to analyze the kinetics of protein kinase A (PKA) with 28 different proteins, ultimately creating a detailed map of PKA's activity and substrate preferences based on where these proteins are located in the cell.
View Article and Find Full Text PDF

Plasmodium vivax, a major agent of malaria in both temperate and tropical climates, has been thought to be unable to infect humans lacking the Duffy (Fy) blood group antigen because this receptor is critical for erythrocyte invasion. Recent surveys in various endemic regions, however, have reported P. vivax infections in Duffy-negative individuals, suggesting that the parasite may utilize alternative receptor-ligand pairs to complete the erythrocyte invasion.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is an enzyme that plays a critical role in a wide variety of cellular processes through its multifunctional activities. TG2 kinase has emerged as an important regulator of apoptosis, as well as of chromatin structure and function. However, systematic investigation of TG2 kinase substrates is limited due to a lack of a suitable TG2 kinase activity assays.

View Article and Find Full Text PDF

Objectives: We investigated the effect of cPKAα conformational states during protein immobilization on an array platform for cPKA autoantibody assays for sensitive and high-throughput profiling of protein kinase A (PKA) autoantibody levels in human sera.

Design And Methods: We prepared activated human cPKAα protein arrays by addition of cofactors including ATP, MgCl2, and Triton X-100 to incubation buffer. Anti-human cPKAα antibody or PKA autoantibody levels in human sera were analyzed using activated human cPKAα protein arrays.

View Article and Find Full Text PDF

Protein kinase A (PKA) plays a crucial role in several biological processes; however, there is no assay with sufficient sensitivity and specificity to determine serological PKA (sPKA) activity. Here we present an on-chip activity assay that employs cysteine-modified kemptide arrays to determine specific sPKA activity in human sera that eliminates the potential contributions of other kinases with a protein kinase peptide inhibitor. The sensitivity of the on-chip sPKA activity assay was greatly enhanced by Triton X-100, with a 0.

View Article and Find Full Text PDF

In Plasmodium, the membrane of intracellular parasites is initially formed during invasion as an invagination of the red blood cell surface, which forms a barrier between the parasite and infected red blood cells in asexual blood stage parasites. The membrane proteins of intracellular parasites of Plasmodium species have been identified such as early-transcribed membrane proteins (ETRAMPs) and exported proteins (EXPs). However, there is little or no information regarding the intracellular parasite membrane in Plasmodium vivax.

View Article and Find Full Text PDF

Background: Proteins secreted from the rhoptry in Plasmodium merozoites are associated with the formation of tight junctions and parasitophorous vacuoles during invasion of erythrocytes and are sorted within the rhoptry neck or bulb. Very little information has been obtained to date about Plasmodium vivax rhoptry-associated leucine (Leu) zipper-like protein 1 (PvRALP1; PVX_096245), a putative rhoptry protein. PvRALP1 contains a signal peptide, a glycine (Gly)/glutamate (Glu)-rich domain, and a Leu-rich domain, all of which are conserved in other Plasmodium species.

View Article and Find Full Text PDF

Unlabelled: Completion of sequencing of the Plasmodium vivax genome and transcriptome offers the chance to identify antigens among >5000 candidate proteins. To identify those P. vivax proteins that are immunogenic, a total of 152 candidate proteins (160 fragments) were expressed using a wheat germ cell-free system.

View Article and Find Full Text PDF

The development of molecular probes is a prerequisite for activity-based protein profiling. This strategy helps in characterizing the catalytic activity and function of proteins, and how these proteins and protein complexes control biological processes of interest. These probes are composed of a reactive functional group and a reporter tag.

View Article and Find Full Text PDF

Background: Circumsporozoite protein (CSP) is essential for sporozoite formation and sporozoite invasion into human hepatocyte. Previously, a recombinant P. vivax CSP based on chimeric repeats (rPvCSP-c) representing two major alleles VK210 and VK247 within central region has been designed.

View Article and Find Full Text PDF

Merozoite surface protein 1 of Plasmodium vivax (PvMSP1), a glycosylphosphatidylinositol-anchored protein (GPI-AP), is a malaria vaccine candidate for P. vivax. The paralog of PvMSP1, named P.

View Article and Find Full Text PDF

Proteomic studies based on abundance, activity, or interactions have been used to investigate protein functions in normal and pathological processes, but their combinatory approach has not been attempted. We present an integrative proteomic profiling method to measure protein activity and interaction using fluorescence-based protein arrays. We used an on-chip assay to simultaneously monitor the transamidating activity and binding affinity of transglutaminase 2 (TG2) for 16 TG2-related proteins.

View Article and Find Full Text PDF

Peptide arrays have emerged as a key technology for drug discovery, diagnosis, and cell biology. Despite the promise of these arrays, applications of peptide arrays to quantitative analysis of enzyme kinetics have been limited due to the difficulty in obtaining quantitative information of enzymatic reaction products. In this study, we developed a new approach for the quantitative kinetics analysis of proteases using fluorescence-conjugated peptide arrays, a surface concentration-based assay with solid-phase peptide standards using dry-off measurements, and compared it with an applied concentration-based assay.

View Article and Find Full Text PDF

We have developed an assay using peptide arrays based on phase transition from the glass substrate to the liquid for monitoring quantitative protease activity in real-time. Peptide arrays were fabricated using a bifunctional cross-linker, N-[γ-maleimidobutyryloxy] sulfosuccinimide ester, and a substrate peptide containing two functional groups, cysteine and tetramethyl-6-carboxyrhodamine (TAMRA) on the C- and N-terminus, respectively. The phase transition-based peptide arrays were characterized by analyzing the substrate peptide cleaved from the solid substrate by matrix metalloproteinase-3 (MMP-3).

View Article and Find Full Text PDF

For minimizing systemic experimental variation in the analysis of antibody array data, we developed a novel median-centered/IgM-tagged-internal standard (TIS) assay normalization using median-centering and TIS assay-based determination of serum IgM concentrations. We evaluated five normalization methods by analyzing correlation coefficients and coefficients of variation for six serum proteins using human serum samples from normal controls (n=25) and patients with liver cirrhosis (n=25) or hepatocellular carcinoma (HCC; n=29). Median-centered normalization improved correlation coefficients, while IgM-based normalizations improved coefficients of variation.

View Article and Find Full Text PDF

Human lung cancer is a major cause of cancer mortality worldwide. Understanding the pathophysiological features and the development of novel biomarkers for diagnosis as well as treatment are major tasks. In the present study, sera from ten SQLC patients and healthy control (HEC) were collected and pooled, respectively.

View Article and Find Full Text PDF

We developed a novel on-chip assay using protein arrays for quantitative and rapid analysis of blood coagulation factor XIII (FXIII) activity in human plasma. FXIII is activated by concerted action of thrombin and Ca(2+) and plays essential roles in hemostasis, angiogenesis, and wound healing. We fabricated protein arrays by immobilizing fibrinogen onto the 3-aminopropyltrimethoxysilane layer of well-type arrays and determined FXIII activity by analyzing biotinylated fibrinogen with Cy3-conjugated streptavidin.

View Article and Find Full Text PDF

We developed a novel assay system using an array-based spectral surface plasmon resonance (SPR) biosensor for a high-throughput analysis of matrix metalloproteinase (MMP)-3 activity. Gelatin arrays were fabricated by immobilizing gelatin, a MMP-3 substrate, on amine-modified gold arrays. MMP-3 activity was determined by monitoring the shift of SPR wavelength caused by gelatin proteolysis.

View Article and Find Full Text PDF