Publications by authors named "Deodatta Moreshwar Phase"

Competition between spin-orbit interaction and electron correlations can stabilize a variety of non-trivial electronic and magnetic ground states. Using density functional theory calculations, here we show that different exotic electronic and magnetic ground states can be obtained by electron filling of the B-site cation in the NaBO family of compounds (B = Ta, Ir, Pt and Tl). Electron filling leads to a Peierls insulator state with a direct band gap to = 1/2 spin-orbit assisted Mott-insulator to band insulator and then to negative charge-transfer half-metal transition.

View Article and Find Full Text PDF

Magnetoelastic and magnetoelectric coupling in the artificial multiferroic heterostructures facilitate valuable features for device applications such as magnetic field sensors and electric-write magnetic-read memory devices. In ferromagnetic/ferroelectric heterostructures, the intertwined physical properties can be manipulated by an external perturbation, such as an electric field, temperature, or a magnetic field. Here, we demonstrate the remote-controlled tunability of these effects under visible, coherent, and polarized light.

View Article and Find Full Text PDF

BaBiO(BBO) is known to be a valence-skipping perovskite, which avoids the metallic state through charge disproportionation (CD), the mechanism of which is still unresolved. A novel mechanism for CD is presented here in the covalent limit using a molecular orbital (MO) picture under two scenarios: (case i) Bi 6sp-O 2p and (case ii) Bi 6p-O 2p hybridizations that favor 5+ and 3+ states, respectively. The proposed model is further validated by using a combinatorial approach of X-ray spectroscopic experiments and first-principle calculations.

View Article and Find Full Text PDF