Objective: Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for clinical and research applications. Yet, it remains unclear how the stimulation frequency differentially impacts various neuron types. Here, we aimed to quantify the frequency-dependent behavior of key neocortical cell types.
View Article and Find Full Text PDFWe define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency.
View Article and Find Full Text PDFWe define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency.
View Article and Find Full Text PDFImplanted bioelectronic devices can form distributed networks capable of sensing health conditions and delivering therapy throughout the body. Current clinically-used approaches for wireless communication, however, do not support direct networking between implants because of signal losses from absorption and reflection by the body. As a result, existing examples of such networks rely on an external relay device that needs to be periodically recharged and constitutes a single point of failure.
View Article and Find Full Text PDFNumerical modeling of electric fields induced by transcranial alternating current stimulation (tACS) is currently a part of the standard procedure to predict and understand neural response. Quasi-static approximation (QSA) for electric field calculations is generally applied to reduce the computational cost. Here, we aimed to analyze and quantify the validity of the approximation over a broad frequency range.
View Article and Find Full Text PDFThis paper describes the exploration of the combined antenna-channel model for a horse hoof. An antenna of 25 mm × 40 mm is designed in the ISM 868 MHz band. During the characterization and design of the antenna, the dynamic and harsh environment of the horse hoof is taken into account throughout every step of the procedure because it is impossible to de-embed the antenna from its environment.
View Article and Find Full Text PDFObjective: Cellular sensitivity to heat is highly variable depending on the cell line. The aim of this paper is to assess the cellular sensitivity of the A375 melanoma cell line to continuous (CW) millimeter-waves (MMW) induced heating at 58.4 GHz, between 37 C and 47 C to get a deeper insight into optimization of thermal treatment of superficial skin cancer.
View Article and Find Full Text PDFShallow penetration of millimeter waves (MMW) and non-uniform illumination in in vitro experiments result in a non-uniform distribution of the specific absorption rate (SAR). These SAR gradients trigger convective currents in liquids affecting transient and steady-state temperature distributions. We analyzed the effect of convection on temperature dynamics during MMW exposure in continuous-wave (CW) and pulsed-wave (PW) amplitude-modulated regimes using micro-thermocouples.
View Article and Find Full Text PDFAutonomous implantable bioelectronics requires efficient radiating structures for data transfer and wireless powering. The radiation of body-implanted capsules is investigated to obtain the explicit radiation optima for E- and B-coupled sources of arbitrary dimensions and properties. The analysis uses the conservation-of-energy formulation within dispersive homogeneous and stratified canonical body models.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
April 2019
Background And Objective: In-body biotelemetry devices enable wireless monitoring of a wide range of physiological parameters. These devices rely on antennas to interface with external receivers, yet existing systems suffer from impedance detuning caused by the substantial differences in electromagnetic properties among various tissues. In this paper, we propose an immune-to-detuning in-body biotelemetry platform featuring a novel tissue-independent antenna design.
View Article and Find Full Text PDF