Publications by authors named "Denoziere M"

Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2'-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams.

View Article and Find Full Text PDF

In the context of the decrease in the eye lens dose limit for occupational exposure to 20 mSv per year stated by the recent revision of the European Basic Safety Standards Directive 2013/59/EURATOM, the European Radiation Dosimetry Group (EURADOS) has organised in 2014, for the first time, an intercomparison exercise for eye lens dosemeters. The main objective was to assess the capabilities of the passive eye lens dosemeters currently in use in Europe for occupational monitoring in medical fields. A total of 20 European individual monitoring services from 15 different countries have participated.

View Article and Find Full Text PDF

Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10).

View Article and Find Full Text PDF

Water calorimeters are used to establish absorbed dose standards in several national metrology laboratories involved in ionizing radiation dosimetry. These calorimeters have been first used in high-energy photons of (60)Co or accelerator beams, where the depth of measurement in water is large (5 or 10 cm). The LNE-LNHB laboratory has developed a specific calorimeter which makes measurements at low depth in water (down to 0.

View Article and Find Full Text PDF

The ORAMED (Optimization of RAdiation protection for MEDical staff) project is funded by EU-EURATOM within the 7° Framework Programme. Task 2 of the project is devoted to study the dose to the eye lens. The study was subdivided into various topics, starting from a critical revision of the operational quantity H(p)(3), with the corresponding proposal of a cylindrical phantom simulating as best as possible the head in which the eyes are located, the production of a complete set of air kerma to dose equivalent conversion coefficients for photons from 10 keV to 10 MeV, and finally, the optimisation of the design of a personal dosemeter well suited to respond in terms of H(p)(3).

View Article and Find Full Text PDF

Recent epidemiological studies suggest a rather low-dose threshold (<0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all.

View Article and Find Full Text PDF

The work package 3 of the ORAMED project, Collaborative Project (2008-11) supported by the European Commission within its seventh Framework Programme, is focused on the optimisation of the use of active personal dosemeters (APDs) in interventional radiology and cardiology (IR/IC). Indeed, a lack of appropriate APD devices is identified for these specific fields. Few devices can detect low-energy X rays (20-100 keV), and none of them are specifically designed for working in pulsed radiation fields.

View Article and Find Full Text PDF

An overview of the use of active personal dosemeters (APD) in interventional radiology is presented. It is based on the work done by the working package 7 of the CONRAD coordinated action supported by the EC within the frame of the 6th FP. This study was done in collaboration with the working package 4 of CONRAD to deal with the calculations required for studying the new calibration facility.

View Article and Find Full Text PDF

An intercomparison of ring dosemeters has been organised with the aim of assessing the technical capabilities of available extremity dosemeters and focusing on their performance at clinical workplaces with potentially high extremity doses. Twenty-four services from 16 countries participated in the intercomparison. The dosemeters were exposed to reference photon ((137)Cs) and beta ((147)Pm, (85)Kr and (90)Sr/(90)Y) fields together with fields representing realistic exposure situations in interventional radiology (direct and scattered radiation) and nuclear medicine ((99 m)Tc and (18)F).

View Article and Find Full Text PDF

The effect of different X ray radiation qualities on the calibration of mammographic dosemeters was investigated within the framework of a EUROMET (European Collaboration in Measurement Standards) project. The calibration coefficients for two ionization chambers and two semiconductor detectors were established in 13 dosimetry calibration laboratories for radiation qualities used in mammography. They were compared with coefficients for other radiation qualities, including those defined in ISO 4037-1, with first half value layers in the mammographic range.

View Article and Find Full Text PDF