Publications by authors named "Denny W"

PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown.

View Article and Find Full Text PDF

Organelle selective fluorescent probes, especially those capable of concurrent detection of specific organelles, are of benefit to the research community in delineating the interplay between various organelles and the impact of such interaction in maintaining cellular homeostasis and its disruption in the diseased state. Although very useful, such probes are synthetically challenging to design due to the stringent lipophilicity requirement posed by different organelles, and hence, the lack of such probes being reported so far. This work details the synthesis, photophysical properties, and cellular imaging studies of two bora-diaza-indacene based fluorescent probes that can specifically and simultaneously visualise lipid droplets and endoplasmic reticulum; two organelles suggested having close interactions and implicated in stress-induced cellular dysfunction and disease progression.

View Article and Find Full Text PDF

Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery.

View Article and Find Full Text PDF

The emergence of multidrug-resistant strains of M. tuberculosis has raised concerns due to the greater difficulties in patient treatment and higher mortality rates. Herein, we revisited the 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine scaffold and identified potent new carbamate derivatives having MIC values of 0.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Whilst the role of the efflux transporters are well established in GBM, the expression and function of uptake transporters, such as the organic anion transporting polypeptide (OATP) family, are not well understood. OATPs possess broad substrate specificity that includes anti-cancer agents; therefore, we sought to investigate the expression of four OATP isoforms in human GBM cell types using patient tumor tissue.

View Article and Find Full Text PDF

The development of chemotherapies for glioblastoma is hindered by their limited bioavailability and toxicity on normal brain function. To overcome these limitations, we investigated the structure-dependent activity of heptamethine cyanine dyes (HMCD), a group of tumour-specific and BBB permeable near-infrared fluorescent dyes, in both commercial (U87MG) and patient-derived GBM cell lines. HMCD analogues with strongly ionisable sulphonic acid groups were not taken up by patient-derived GBM cells, but were taken up by the U87MG cell line.

View Article and Find Full Text PDF

Objective: Laryngeal pacing (LP) is a highly anticipated therapeutic option for patients suffering from bilateral vocal fold paralysis with synkinesis. Identification of candidate patients requires confirmation of a stimulable posterior cricoidarythenoid muscle (PCA) by neuromuscular electrical stimulation (NMES). A silicone endoscopic cap electrode (ECE50) was designed to be operated as an endoscopic extension tip for selective PCA stimulation and confirmation of a glottic opening movement in a setting comparable to a gastroscopy procedure.

View Article and Find Full Text PDF

Pyrazolo[1,5-]pyrimidines have been reported as potent inhibitors of mycobacterial ATP synthase for the treatment of (). In this work, we report the design and synthesis of approximately 70 novel 3,5-diphenyl--(pyridin-2-ylmethyl)pyrazolo[1,5-]pyrimidin-7-amines and their comprehensive structure-activity relationship studies. The most effective pyrazolo[1,5-]pyrimidin-7-amine analogues contained a 3-(4-fluoro)phenyl group, together with a variety of 5-alkyl, 5-aryl and 5-heteroaryl substituents.

View Article and Find Full Text PDF

Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.

View Article and Find Full Text PDF

The presence of "hypoxic" tissue (with O levels of <0.1 mmHg) in solid tumours, resulting in quiescent tumour cells distant from blood vessels, but capable of being reactivated by reoxygenation following conventional therapy (radiation or drugs), have long been known as a limitation to successful cancer chemotherapy. This has resulted in a sustained effort to develop nitroaromatic "hypoxia-activated prodrugs" designed to undergo enzyme-based nitro group reduction selectively in these hypoxic regions, to generate active drugs.

View Article and Find Full Text PDF

The p38 MAP kinases are a sub-family of the broad group of mitogen-activated serinethreonine protein kinases. The best-characterised, most widely expressed, and most targeted by drugs is p38α MAP kinase. This review briefly summarises the place of p38α MAP kinase in cellular signalling and discusses the structures and activity profiles of representative examples of the major classes of inhibitors and activators (both synthetic compounds and natural products) of this enzyme.

View Article and Find Full Text PDF

The CDK4/6 inhibitor palbociclib, combined with endocrine therapy, has been shown to be effective in postmenopausal women with estrogen receptor-positive, HER2-negative advanced or metastatic breast cancer. However, palbociclib is not as effective in the highly aggressive, triple-negative breast cancer that lacks sensitivity to chemotherapy or endocrine therapy. We hypothesized that conjugation of the near-infrared dye MHI-148 with palbociclib can produce a potential theranostic in triple-negative, as well as estrogen receptor-positive, breast cancer cells.

View Article and Find Full Text PDF

During our studies into preparing analogues of pyrazolopyrimidine as ATP synthesis inhibitors of , a regiospecific condensation reaction between ethyl 4,4,4-trifluoroacetoacetate and 3-(4-fluorophenyl)-1-pyrazol-5-amine was observed which was dependent on the specific reaction conditions employed. This work identifies optimized reaction conditions to access either the pyrazolo[3,4-]pyridine or the pyrazolo[1,5-]pyrimidine scaffold. This has led to the structural confirmation of the previously reported pyrazolopyrimidine which was reported as pyrazolo[1,5-]pyrimidine structure which was corrected to pyrazolo[3,4-]-pyrimidine .

View Article and Find Full Text PDF

Drug resistant tuberculsosis (TB) is global health crisis that demands novel treatment strategies. Bacterial ATP synthase inhibitors such as bedaquiline and next-generation analogues (such as TBAJ-876) have shown promising efficacy in patient populations and preclinical studies, respectively, suggesting that selective targeting of this enzyme presents a validated therapeutic strategy for the treatment of TB. In this work, we report tetrahydronaphthalene amides (THNAs) as a new class of ATP synthase inhibitors that are effective in preventing the growth of Mycobacterium tuberculosis (M.

View Article and Find Full Text PDF

The discoidin domain receptor tyrosine kinases DDR1 and DDR2 are distinguished from other kinase enzymes by their extracellular domains, which interact with collagen rather than with peptidic growth factors, before initiating signaling via tyrosine phosphorylation. They share significant sequence and structural homology with both the c-Kit and Bcr-Abl kinases, and so many inhibitors of those kinases are also effective. Nevertheless, there has been an extensive research effort to develop potent and specific DDR inhibitors.

View Article and Find Full Text PDF

Cytoprotective agents are mainly used to protect the gastrointestinal tract linings and in the treatment of gastric ulcers. These agents are devoid of appreciable cytotoxic or cytostatic effects, and medicinal chemistry efforts to modify them into anticancer agents are rare. A drug repurposing campaign initiated in our laboratory with the primary focus of discovering brain cancer drugs resulted in drug-dye conjugate 1, a combination of the cytoprotective agent troxipide and heptamethine cyanine dye MHI 148.

View Article and Find Full Text PDF

Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9.

View Article and Find Full Text PDF

Effective cancer therapeutics for brain tumors must be able to cross the blood-brain barrier (BBB) to reach the tumor in adequate quantities and overcome the resistance conferred by the local tumor microenvironment. Clinically approved chemotherapeutic agents have been investigated for brain neoplasms, but despite their effectiveness in peripheral cancers, failed to show therapeutic success in brain tumors. This is largely due to their poor bioavailability and specificity towards brain tumors.

View Article and Find Full Text PDF

The spectacular success of the mycobacterial FF-ATP synthase inhibitor bedaquiline for the treatment of drug-resistant tuberculosis has generated wide interest in the development of other inhibitors of this enzyme. Work in this realm has included close analogues of bedaquiline with better safety profiles and 'bedaquiline-like' compounds, some of which show potent antibacterial activity although none have yet progressed to clinical trials. The search has lately extended to a range of new scaffolds as potential inhibitors, including squaramides, diaminoquinazolines, chloroquinolines, dihydropyrazolo[1,5-a]pyrazin-4-ones, thiazolidinediones, diaminopyrimidines and tetrahydroquinolines.

View Article and Find Full Text PDF

Antitubercular 7-substituted 2-nitroimidazo[2,1-][1,3]oxazines were previously shown to exhibit potent antileishmanial and antitrypanosomal activities, culminating in a new clinical investigational drug for visceral leishmaniasis (DNDI-0690). To offset development risks, we continued to seek further leads with divergent candidate profiles, especially analogues possessing greater aqueous solubility. Starting from an efficacious monoaryl derivative, replacement of the side chain ether linkage by novel amine, amide, and urea functionality was first explored; the former substitution was well-tolerated and but elicited marginal alterations to solubility (except through a less stable benzylamine), whereas the latter groups resulted in significant solubility improvements (up to 53-fold) but an antileishmanial potency reduction of at least 10-fold.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new drug candidate called DNDI-0690 for treating visceral leishmaniasis, based on previous studies of certain antitubercular compounds.
  • They analyzed a racemic monoaryl lead that performed well in mice but had safety concerns, prompting the search for better analogues with improved solubility and lower toxicity.
  • A promising compound, a pyridine derivative, showed excellent oral bioavailability and significantly reduced parasite levels in a mouse model, indicating its potential effectiveness against visceral leishmaniasis.
View Article and Find Full Text PDF

Introduction: Colony stimulating factor 1 receptor (CSF-1R, also known as c-FMS kinase) is in the class III receptor tyrosine kinase family, along with c-Kit, Flt3 and PDGFRα. CSF-1/CSF-1R signaling promotes the differentiation and survival of myeloid progenitors into populations of monocytes, macrophages, dendritic cells and osteoclasts, as well as microglial cells and also recruits host macrophages to develop into tumor-associated macrophages (TAMs), which promote tumor progression and metastasis.

Areas Covered: In the last 5 years, and recently stimulated by the approval of pexidartinib (Turalio™, Daiichi Sankyo) in 2019 for the treatment of tenosynovial giant cell tumors, there has been a large increase in activity (both journal articles and patent applications) around small molecule inhibitors of CSF1R.

View Article and Find Full Text PDF

Hypoxia is an adverse prognostic feature of solid cancers that may be overcome with hypoxia-activated prodrugs (HAPs). Tirapazamine (TPZ) is a HAP which has undergone extensive clinical evaluation in this context and stimulated development of optimized analogues. However the subcellular localization of the oxidoreductases responsible for mediating TPZ-dependent DNA damage remains unclear.

View Article and Find Full Text PDF