Photocatalytic solar hydrogen generation, encompassing both overall water splitting and organic reforming, presents a promising avenue for green hydrogen production. This technology holds the potential for reduced capital costs in comparison to competing methods like photovoltaic-electrocatalysis and photoelectrocatalysis, owing to its simplicity and fewer auxiliary components. However, the current solar-to-hydrogen efficiency of photocatalytic solar hydrogen production has predominantly remained low at ≈1-2% or lower, mainly due to curtailed access to the entire solar spectrum, thus impeding practical application of photocatalytic solar hydrogen production.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2022
Photoreforming has been shown to accelerate the H evolution rate compared to water splitting due to thermodynamically favorable organic oxidation. In addition, the potential to simultaneously produce solar fuel and value-added chemicals is a significant benefit of photoreforming. To achieve an efficient and economically viable photoreforming process, the selection and design of an appropriate photocatalyst is essential.
View Article and Find Full Text PDFPhotoreforming is a promising alternative to water splitting for H generation due to the favorable organic oxidation half-reaction and the potential to simultaneously produce solar fuel and value-added chemicals. Recently, carbon nitride has received significant attention as an inexpensive photocatalyst for the photoreforming process. However, the application of carbon nitride continues to be hampered by its poor photocatalytic performance.
View Article and Find Full Text PDF