Superabsorbent hydrogels (SAH) are crosslinked three-dimensional networks distinguished by their super capacity to stabilize a large quantity of water without dissolving. Such behavior enables them to engage in various applications. Cellulose and its derived nanocellulose can become SAHs as an appealing, versatile, and sustainable platform because of abundance, biodegradability, and renewability compared to petroleum-based materials.
View Article and Find Full Text PDFThe macromolecule oligo(poly(ethylene glycol) fumarate) (OPF) exhibits promising attributes for creating suitable three-dimensional hydrogel environments to study cell behavior, deliver therapeutics, and serve as a degradable, nonfouling material. However, traditional synthesis techniques are time consuming, contain salt contaminants, and generate significant waste. These issues have been overcome with an alternative, one-pot approach that utilizes inert gas sparging.
View Article and Find Full Text PDFThe application of parallel synthesis is an efficient approach to explore the chemical space and to rapidly develop meaningful structure activity relationship (SAR) data for drug discovery programs. However, the effectiveness of the parallel synthesis requires a high throughput purification workflow that can process a large number of crude samples within a meaningful time frame. This paper describes a high throughput purification platform that has been adopted at Merck's Rahway research site.
View Article and Find Full Text PDF