Tuberculosis, caused by (), is a serious and devastating infectious disease worldwide. Approximately a quarter of the world population harbors latent infection without pathological consequences. Exposure of immunocompetent healthy individuals with does not result in active disease in more than 90% individuals, suggesting a defining role of host immunity to prevent and/or clear early infection.
View Article and Find Full Text PDFTuberculosis (TB), an infectious disease caused by (), kills 5,000 people per day globally. Rapid development and spread of various multi drug-resistant strains of emphasize that an effective vaccine is still the most cost-effectives and efficient way of controlling and eradicating TB. Bacillus Calmette-Guerin (BCG), the only licensed TB vaccine, still remains the most widely administered human vaccine, but is inefficient in protecting from pulmonary TB in adults.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb), the bacterial cause of tuberculosis, is a leading infectious agent worldwide. The development of a new vaccine against Mtb is essential to control global spread of tuberculosis, since the current vaccine BCG is not very effective and antibiotic resistance is a serious, burgeoning problem. ESAT-6 is a secreted protein of Mtb, which is absent in BCG but has been implicated in inducing protective immunity against Mtb.
View Article and Find Full Text PDFThe resurgence of mycobacterial infections and the emergence of drug-resistant strains urgently require a new class of agents that are distinct than current therapies. A group of 5-ethynyl (6-10), 5-(2-propynyloxy) (16, 18, 20, 22, 24), 5-(2-propynyloxy)-3-N-(2-propynyl) (17, 19, 21, 23, 25) and 5-hydroxymethyl-3-N-(2-propynyl) (30-33) derivatives of pyrimidine nucleosides were synthesized and evaluated against mycobacteria [Mycobacterium tuberculosis (Mtb), Mycobacterium bovis (BCG) and Mycobacterium avium], gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and gram-negative bacteria (Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa) alone and in combination with existing drugs in in vitro assays. Although several compounds exhibited marked inhibitory activity at a higher concentration against Mtb, M.
View Article and Find Full Text PDFObjective: To study the laboratory diagnosis of tuberculosis (TB), and relate the findings to its epidemiology in Central Saudi Arabia.
Methods: This retrospective study was carried out at the Department of Pathology/Microbiology, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia between January 2003 and December 2010. Data were retrieved from the hospital information system on laboratory findings.
Discovery of novel antimycobacterial compounds that work on distinctive targets and by diverse mechanisms of action is urgently required for the treatment of mycobacterial infections due to the emerging global health threat of tuberculosis. We have identified a new class of 5-ethyl or hydroxy (or methoxy) methyl-substituted pyrimidine nucleosides as potent inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis (H37Ra, H37Rv) and Mycobacterium avium. A series of 2'-'up' fluoro (or hydroxy) nucleosides (1, 2, 4-6, 9, 10, 13, 16, 18, 21, 24) was synthesized and evaluated for antimycobacterial activity.
View Article and Find Full Text PDFSeveral 5-alkyl (or halo)-3'-azido (amino or halo) analogs of pyrimidine nucleosides have been synthesized and evaluated against Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium. Among these compounds, 3'-azido-5-ethyl-2',3'-dideoxyuridine (3) was found to have significant antimycobacterial activities against M. bovis (MIC(50)=1μg/mL), M.
View Article and Find Full Text PDFTuberculosis (TB) has become an increasing problem since the emergence of human immunodeficiency virus and increasing appearance of drug-resistant strains. There is an urgent need to advance our knowledge and discover a new class of agents that are distinct than current therapies. Antimycobacterial activities of several 5-alkyl, 5-alkynyl, furanopyrimidines and related 2'-deoxynucleosides were investigated against Mycobacterium tuberculosis.
View Article and Find Full Text PDFTuberculosis (TB) is a major health problem worldwide. We herein report a new class of pyrimidine nucleosides as potent inhibitors of Mycobacterium tuberculosis (M. tuberculosis).
View Article and Find Full Text PDFThe prevalence of tuberculosis (TB) and mutidrug-resistant tuberculosis (MDR-TB) has been increasing, leading to serious infections, high mortality, and a global health threat. Here, we report the identification of a novel class of dideoxy nucleosides as potent and selective inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis, and drug-resistant Mycobacterium tuberculosis. A series of 5-acetylenic derivatives of 2',3'-dideoxyuridine (3-8) and 3'-fluoro-2',3'-dideoxyuridine (22-27) were synthesized and tested for their antimycobacterial activity against M.
View Article and Find Full Text PDFThe resurgence of tuberculosis and the emergence of multiple-drug-resistant strains of Mycobacteria necessitate the search for new classes of antimycobacterial agents. We synthesized a series of 1-beta-D-2'-arabinofuranosyl and 1-(2'-deoxy-2'-fluoro-beta-D-ribofuranosyl) pyrimidine nucleosides possessing diverse sets of alkynyl, alkenyl, alkyl, and halo substituents at the C-5 position of the uracil and investigated their effect on activity against M. tuberculosis, M.
View Article and Find Full Text PDFIn vitro anti-mycobacterial activities of several 5-substituted acyclic pyrimidine nucleosides containing 1-(2-hydroxyethoxy)methyl and 1-[(2-hydroxy-1-(hydroxymethyl) ethoxy)methyl] acyclic moieties are investigated against three mycobacteria viz. Mycobacterium tuberculosis, Mycobacterium bovis, and Mycobacterium avium, which cause serious infections and mortality in healthy people as well as patients with AIDS. 1-(2-Hydroxyethoxy)methyl-5-(1-azido-2-haloethyl or 1-azidovinyl) analogs (4-7), 1-[(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl]-5-decynyluracil (37), and 1-[(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl]-5-dodecynyluracil (38) exhibited significant in vitro anti-tubercular activity against these mycobacteria.
View Article and Find Full Text PDFWe herein report a new category of 5-substituted pyrimidine nucleosides as potent inhibitors of mycobacteria. A series of 5-alkynyl derivatives of 2'-deoxyuridine (1-8), 2'-deoxycytidine (9-14), uridine (15-17), and 2'-O-methyluridine (18, 19) were synthesized and evaluated for their antimycobacterial activity in vitro. 5-Decynyl, 5-dodecynyl, and 5-tetradecynyl derivatives showed the highest antimycobacterial potency against M.
View Article and Find Full Text PDFMycobacterium tuberculosis and Mycobacterium avium infections cause the two most important mycobacterioses, leading to increased mortality in patients with AIDS. Various 5-substituted 2'-deoxyuridines, uridines, 2'-O-methyluridine, 2'-ribofluoro-2'-deoxyuridines, 3'-substituted-2',3'-dideoxy uridines, 2',3'-dideoxyuridines, and 2',3'-didehydro-2',3'-dideoxyuridines were synthesized and evaluated for their in vitro inhibitory activity against M. bovis and M.
View Article and Find Full Text PDFMost current transplantation guidelines suggest that bacteremia or bacterial sepsis precludes organ donation. However, various investigators report good outcomes when donor bacteremia was discovered incidentally posttransplant or when bacteremia was cleared before organ retrieval. The authors present the case of a donor who underwent surgical repair of a congenital heart defect complicated by refractory septic shock with positive blood cultures for cloxacillin-sensitive Staphylococcus aureus until time of death.
View Article and Find Full Text PDFMicrobiology (Reading)
November 1999
An insertion sequence designated IS1626 was isolated and characterized from a Mycobacterium avium clinical strain. IS1626 was detected by high-stringency hybridization with the pMB22/S12 probe from IS900 of Mycobacterium paratuberculosis. IS1626 is 1418 bp in size and has a G+C content of 65 mol%.
View Article and Find Full Text PDF