Publications by authors named "Dennis Wachsmuth"

An accurate semi-experimental equilibrium structure of 8-hydroxyquinoline (8-HQ) has been determined combining experiment and theory. The cm-wave rotational spectrum of 8-HQ was recorded in a pulsed supersonic jet using broadband dual-path reflection and narrowband Fabry-Perot-type resonator Fourier-transform microwave spectrometers. Accurate rotational and quartic centrifugal distortion constants and N quadrupole coupling constants are determined.

View Article and Find Full Text PDF

We report a benchmark-quality equilibrium-like structure of the XeOCS complex, obtained from microwave spectroscopy. The experiments are supported by a wide array of highly accurate calculations, expanding the analysis to the complexes of He, Ne, Ar, Kr, Xe, and Hg with OCS. We investigate the trends in the structures and binding energies of the complexes.

View Article and Find Full Text PDF

The saturated part of the 1,2,3,4-tetrahydroquinoline (THQ) molecule allows for the possibility of multiple conformers' existence. High-resolution microwave spectroscopy, supported by high-level quantum chemistry calculations, was used to determine the precise molecular structures of the conformers of THQ. Via the MP2 calculations, we were able to discriminate four stable conformations, i.

View Article and Find Full Text PDF

The conformational landscape of the bicyclic molecule 2-decalone has been studied in a jet-cooled expansion by using rotational spectroscopy. The investigation covered the frequency region 7-19 GHz using broadband fast-passage IMPACT Fourier-transform microwave techniques. The introduction of the asymmetric carbonyl substituent in the double-chair decalin skeleton originates two distinct inverting conformers with cis ring junction, which were independently identified and characterized in the gas phase.

View Article and Find Full Text PDF

The simplest tricyclic aromatic nitrogen heterocyclic molecules 5,6-benzoquinoline and 7,8-benzoquinoline are possible candidates for detection of aromatic systems in the interstellar medium. Therefore the pure rotational spectra have been recorded using frequency-scanned Stark modulated, jet-cooled millimetre wave absorption spectroscopy (48-87 GHz) and Fourier Transform Microwave (FT-MW) spectroscopy (2-26 GHz) of a supersonic rotationally cold molecular jet. Guided by theoretical molecular orbital predictions, spectral analysis of mm-wave spectra, and higher resolution FT-MW spectroscopy provided accurate rotational and centrifugal distortion constants together with N nuclear quadrupole coupling constants for both species.

View Article and Find Full Text PDF