Publications by authors named "Dennis V Lavrov"

The widely distributed MutS gene family functions in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded this gene family in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes.

View Article and Find Full Text PDF
Article Synopsis
  • * This review highlights the presence of linear mitochondrial DNA in various non-bilaterian animals, with specific origins linked to mechanisms like linear plasmids and tRNA heteroplasmy.
  • * The authors emphasize the importance of including all available linear mtDNA data, even if classified as "incomplete," as they can still contribute valuable insights into evolutionary relationships and gene organization.
View Article and Find Full Text PDF

While Acanthella acuta Schmidt 1862, a common demosponge found in the Mediterranean Sea and Atlantic Ocean, is morphologically similar to other sponges, its mitochondrial DNA (mtDNA) is unique within the class. In contrast to all other studied demosponges, the mtDNA of A. acuta is inferred to be linear and displays several unusual features such as inverted terminal repeats, group II introns in three mitochondrial genes, and two unique open reading frames (ORFs): one of which (ORF1535) combines a DNA polymerase domain with a DNA-directed RNA polymerase domain, while the second bears no discernible similarity to any reported sequences.

View Article and Find Full Text PDF

The gene family is distributed across the tree of life and is involved in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded the set of genes in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes.

View Article and Find Full Text PDF

Mitochondrial proteomes have been experimentally characterized for only a handful of animal species. However, the increasing availability of genomic and transcriptomic data allows one to infer mitochondrial proteins using computational tools. MitoPredictor is a novel random forest classifier, which utilizes orthology search, mitochondrial targeting signal (MTS) identification, and protein domain content to infer mitochondrial proteins in animals.

View Article and Find Full Text PDF

Class Demospongiae is the largest in the phylum Porifera (Sponges) and encompasses nearly 8,000 accepted species in three subclasses: Keratosa, Verongimorpha, and Heteroscleromorpha. Subclass Heteroscleromorpha contains ∼90% of demosponge species and is subdivided into 17 orders. The higher level classification of demosponges underwent major revision as the result of nearly three decades of molecular studies.

View Article and Find Full Text PDF

All studied octocoral mitochondrial genomes (mt-genomes) contain a homologue of the Escherichia coli mutS gene, a member of a gene family encoding proteins involved in DNA mismatch repair, other types of DNA repair, meiotic recombination, and other functions. Although mutS homologues are found in all domains of life, as well as viruses, octocoral mt-mutS is the only such gene found in an organellar genome. While the function of mtMutS is not known, its domain architecture, conserved sequence, and presence of several characteristic residues suggest its involvement in mitochondrial DNA repair.

View Article and Find Full Text PDF

MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair.

View Article and Find Full Text PDF

Despite a conserved set of core mitochondrial functions, animal mitochondrial proteomes show a large variation in size. We analyzed putative mechanisms behind and functional significance of this variation by performing comparative analysis of the experimentally-verified mitochondrial proteomes of four bilaterian animals (human, mouse, Caenorhabditis elegans, and Drosophila melanogaster) and two non-animal outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae). We found that of several factors affecting mitochondrial proteome size, evolution of novel mitochondrial proteins in mammals and loss of ancestral proteins in protostomes were the main contributors.

View Article and Find Full Text PDF

Data on experimentally-characterized animal mitochondrial proteomes (mt-proteomes) are limited to a few model organisms and are scattered across multiple databases, impeding a comparative analysis. We developed two resources to address these problems. First, we re-analyzed proteomic data from six species with experimentally characterized mt-proteomes: animals (Homo sapiens, Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster), and outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae) and created the Metazoan Mitochondrial Proteome Database (MMPdb) to host the results.

View Article and Find Full Text PDF

Mitochondria require ~1,500 proteins for their maintenance and proper functionality, which constitute the mitochondrial proteome (mt-proteome). Although a few of these proteins, mostly subunits of the electron transport chain complexes, are encoded in mitochondrial DNA (mtDNA), the vast majority are encoded in the nuclear genome and imported to the organelle. Previous studies have shown a continuous and complex evolution of mt-proteome among eukaryotes.

View Article and Find Full Text PDF

The homoscleromorph sponge Oscarella carmela, first described from central California, USA is shown to represent two superficially similar but both morphologically and phylogenetically distinct species that are co-distributed. We here describe a new species as Oscarella pearsei, sp. nov.

View Article and Find Full Text PDF

A series of recent expeditions in fjords and canals of Southern Chilean Patagonia allowed the re-collection of Halisarca magellanica Topsent, 1901 and the discovery of a new species, Halisarca desqueyrouxae sp. nov. The material studied was collected at depths ranging from 3 to 30 m at latitudes comprised between 42° and 49°S.

View Article and Find Full Text PDF

Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria.

View Article and Find Full Text PDF

Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria, particularly in certain sponges, exhibit unusual RNA editing processes that can modify RNA sequences through insertions, deletions, or substitutions.
  • The study found mitochondrial cryptogenes in calcaronean sponges, revealing extensive editing via uridylate insertions, which seems rare in other animal lineages.
  • Despite high mutation rates in these sponges, the presence of RNA editing challenges the mutational-hazard hypothesis, suggesting a complex relationship between mutation and RNA modification in mitochondrial evolution.
View Article and Find Full Text PDF

The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-proteobacterial ancestor. However, variation in the complement of mitochondrial-encoded molecules involved in translation, including transfer RNAs (tRNAs), provides evidence for the ongoing evolution of mitochondrial protein synthesis.

View Article and Find Full Text PDF

Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of +1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically.

View Article and Find Full Text PDF

The twin-arginine translocation (Tat) pathway is a protein transport system that moves completely folded proteins across lipid membranes. Genes encoding components of the pathway have been found in the genomes of many Bacteria, Archaea, and eukaryotic organelles including chloroplasts, plant mitochondria, and the mitochondria of many protists. However, with a single exception, Tat genes are absent from the mitochondrial genomes of all animals.

View Article and Find Full Text PDF

The family Oscarellidae is one of the two families in the class Homoscleromorpha (phylum Porifera) and is characterized by the absence of a skeleton and the presence of a specific mitochondrial gene, tatC. This family currently encompasses sponges in two genera: Oscarella with 17 described species and Pseudocorticium with one described species. Although sponges in this group are relatively well-studied, phylogenetic relationships among members of Oscarellidae and the validity of genus Pseudocorticium remain open questions.

View Article and Find Full Text PDF

The two main scientific tasks of taxonomy are species' delineation and classification. These two tasks are often treated differently, with classification accomplished by newly-developed phylogenetic methods, often based on molecular sequences, while delimitation of species is conducted by what is often considered to be an "old-fashioned" typological approach based on morphological description. A new "integrative taxonomy" has been proposed which maintains that species delimitation should be a multidisciplinary undertaking combining several independent datasets.

View Article and Find Full Text PDF

Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage.

View Article and Find Full Text PDF

Sponges (phylum Porifera) are a large and ancient group of morphologically simple but ecologically important aquatic animals. Although their body plan and lifestyle are relatively uniform, sponges show extensive molecular and genetic diversity. In particular, mitochondrial genomes from three of the four previously studied classes of Porifera (Demospongiae, Hexactinellida, and Homoscleromorpha) have distinct gene contents, genome organizations, and evolutionary rates.

View Article and Find Full Text PDF

Background: Haemophilus parasuis is the causative agent of Glässer's disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping.

View Article and Find Full Text PDF

Demosponges, the largest and most diverse class in the phylum Porifera, possess mitochondrial DNA (mtDNA) markedly different from that in other animals. Although several studies investigated evolution of demosponge mtDNA among major lineages of the group, the changes within these groups remain largely unexplored. Recently we determined mitochondrial genomic sequence of the Lake Baikal sponge Lubomirskia baicalensis and described proliferation of small inverted repeats (hairpins) that occurred in it since the divergence between L.

View Article and Find Full Text PDF