Cyanobacterial blooms impact upon the water quality, environmental and ecological status of water bodies and affect most of the uses we make of water. The extent of the impact depends upon the type, size and frequency of the blooms, the size of the water body affected, the uses made of the water and the treatment options available to respond to the blooms. The impacts therefore vary considerably from place to place.
View Article and Find Full Text PDFAdv Exp Med Biol
June 2008
The Risk Assessment Work Group focused on six charge questions related to CHABS, cyanobacteria and their toxins. The charge questions covered the following topics: Research needed to reduce uncertainty in establishing health based guidelines. Research that minimize the cost and maximize the benefits of various regulatory approaches.
View Article and Find Full Text PDFParalytic shellfish poisons (PSPs) are produced by freshwater cyanobacteria and pose a threat to human and animal drinking-water supplies. The wide range of toxin analogues (and the likelihood that further analogues remain to be discovered) means that chromatographic methods are not always reliable indicators of toxicity. Although the mouse bioassay remains the method of choice in the seafood industry, its use is increasingly being questioned on ethical grounds.
View Article and Find Full Text PDFTo simplify our efforts in acquiring toxicological information on endotoxins produced by cyanobacteria, a method development study was undertaken to identify relatively hazard-free and efficient procedures for their extraction. One article sourced and two novel methods were evaluated for their ability to extract lipopolysaccharides (LPSs) or endotoxins from cyanobacteria. The Limulus polyphemus amoebocyte lysate (LAL) assay was employed to compare the performance of a novel method utilizing a 1-butanol-water (HBW) solvent system to that of Westphal's (1965) phenol-water system (HPW) for the extraction of endotoxin from various cyanobacteria.
View Article and Find Full Text PDF