Publications by authors named "Dennis Schaefer-Babajew"

Article Synopsis
  • Feedback inhibition of humoral immunity by antibodies has been observed since 1909, with studies showing that antibodies can either enhance or inhibit immune responses depending on the context.
  • A study focused on individuals who received two high-affinity anti-SARS-CoV-2 monoclonal antibodies and later two mRNA vaccine doses revealed that while their antibody production was slightly lower, their memory B cells predominantly expressed low-affinity IgM antibodies with few mutations and altered binding specificity.
  • The research indicates that existing high-affinity antibodies can affect the immune response by lowering the activation threshold for B cells and masking their target sites, which may help explain changes in memory antibody profiles after booster vaccinations.
View Article and Find Full Text PDF

Feedback inhibition of humoral immunity by antibodies was initially documented in guinea pigs by Theobald Smith in 1909, who showed that passive administration of excess anti-Diphtheria toxin inhibited immune responses. Subsequent work documented that antibodies can enhance or inhibit immune responses depending on antibody isotype, affinity, the physical nature of the antigen, and engagement of immunoglobulin (Fc) and complement (C') receptors. However, little is known about how pre-existing antibodies might influence the subsequent development of memory B cells.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a global problem in part because of the emergence of variants of concern that evade neutralization by antibodies elicited by prior infection or vaccination. Here we report on human neutralizing antibody and memory responses to the Gamma variant in a cohort of hospitalized individuals. Plasma from infected individuals potently neutralized viruses pseudotyped with Gamma SARS-CoV-2 spike protein, but neutralizing activity against Wuhan-Hu-1-1, Beta, Delta, or Omicron was significantly lower.

View Article and Find Full Text PDF

The Omicron variant of SARS-CoV-2 infected many vaccinated and convalescent individuals. Despite the reduced protection from infection, individuals who received three doses of an mRNA vaccine were highly protected from more serious consequences of infection. Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving three mRNA vaccine doses.

View Article and Find Full Text PDF

The omicron variant of SARS-CoV-2 infected very large numbers of SARS-CoV-2 vaccinated and convalescent individuals . The penetrance of this variant in the antigen experienced human population can be explained in part by the relatively low levels of plasma neutralizing activity against Omicron in people who were infected or vaccinated with the original Wuhan-Hu-1 strain . The 3 mRNA vaccine dose produces an initial increase in circulating anti-Omicron neutralizing antibodies, but titers remain 10-20-fold lower than against Wuhan-Hu-1 and are, in many cases, insufficient to prevent infection .

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B cell responses that continue to evolve for at least a year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern. As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested.

View Article and Find Full Text PDF

The number and variability of the neutralizing epitopes targeted by polyclonal antibodies in individuals who are SARS-CoV-2 convalescent and vaccinated are key determinants of neutralization breadth and the genetic barrier to viral escape. Using HIV-1 pseudotypes and plasma selection experiments with vesicular stomatitis virus/SARS-CoV-2 chimaeras, here we show that multiple neutralizing epitopes, within and outside the receptor-binding domain, are variably targeted by human polyclonal antibodies. Antibody targets coincide with spike sequences that are enriched for diversity in natural SARS-CoV-2 populations.

View Article and Find Full Text PDF

Antibodies elicited by infection accumulate somatic mutations in germinal centers that can increase affinity for cognate antigens. We analyzed 6 independent groups of clonally related severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) Spike receptor-binding domain (RBD)-specific antibodies from 5 individuals shortly after infection and later in convalescence to determine the impact of maturation over months. In addition to increased affinity and neutralization potency, antibody evolution changed the mutational pathways for the acquisition of viral resistance and restricted neutralization escape options.

View Article and Find Full Text PDF

More than one year after its inception, the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains difficult to control despite the availability of several working vaccines. Progress in controlling the pandemic is slowed by the emergence of variants that appear to be more transmissible and more resistant to antibodies. Here we report on a cohort of 63 individuals who have recovered from COVID-19 assessed at 1.

View Article and Find Full Text PDF

Over one year after its inception, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several excellent vaccines. Progress in controlling the pandemic is slowed by the emergence of variants that appear to be more transmissible and more resistant to antibodies . Here we report on a cohort of 63 COVID-19-convalescent individuals assessed at 1.

View Article and Find Full Text PDF

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of clinical concern. In a cohort of 417 persons who had received the second dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine at least 2 weeks previously, we identified 2 women with vaccine breakthrough infection. Despite evidence of vaccine efficacy in both women, symptoms of coronavirus disease 2019 developed, and they tested positive for SARS-CoV-2 by polymerase-chain-reaction testing.

View Article and Find Full Text PDF

Antibodies elicited in response to infection undergo somatic mutation in germinal centers that can result in higher affinity for the cognate antigen. To determine the effects of somatic mutation on the properties of SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibodies, we analyzed six independent antibody lineages. As well as increased neutralization potency, antibody evolution changed pathways for acquisition of resistance and, in some cases, restricted the range of neutralization escape options.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined the responses of 20 volunteers who received the Moderna or Pfizer-BioNTech vaccines against SARS-CoV-2 and found that after eight weeks, they had high levels of anti-SARS-CoV-2 antibodies and memory B cells similar to those who recovered from infection.
  • - While the vaccines produced potent neutralizing antibodies targeting the virus, their effectiveness against certain variants with mutations (E484K, N501Y, K417N) was notably reduced.
  • - The findings indicate that it’s crucial to evaluate the effectiveness of monoclonal antibodies against new variants and suggest that mRNA vaccines may require updates over time to maintain their effectiveness.
View Article and Find Full Text PDF

SARS-CoV-2 is responsible for an ongoing pandemic that has affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals, we measured T cell responses in paired samples obtained an average of 1.3 and 6.

View Article and Find Full Text PDF
Article Synopsis
  • Over 100 million people have been infected by SARS-CoV-2, resulting in over two million deaths, prompting the use of mRNA vaccines like Moderna and Pfizer-BioNTech to combat COVID-19.
  • A study of 20 volunteers showed that both vaccines produced strong antibody responses and memory B cells, comparable to those seen in individuals recovered from natural infections.
  • However, the effectiveness of these vaccine-induced antibodies was slightly reduced against certain SARS-CoV-2 variants, indicating that continuous monitoring and potential updates to vaccines may be necessary to maintain their efficacy.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 causes a global pandemic and studying immune responses in recovered individuals revealed significant insights.
  • Analysis of T cell responses from 41 individuals, taken at 1.3 and 6.1 months post-infection, showed that memory T cells are persistent and can quickly respond to the virus.
  • Recovered patients exhibit long-lasting changes in their CD4 and CD8 T cell populations, including alterations in activation and exhaustion markers.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection during pregnancy causes congenital abnormalities, including microcephaly. However, rates vary widely, and the contributing risk factors remain unclear. We examined the serum antibody response to ZIKV and other flaviviruses in Brazilian women giving birth during the 2015-2016 outbreak.

View Article and Find Full Text PDF

Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective.

View Article and Find Full Text PDF

Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure.

View Article and Find Full Text PDF