Publications by authors named "Dennis R Winge"

Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question.

View Article and Find Full Text PDF

Synthesis of iron-sulfur (Fe/S) clusters in living cells requires scaffold proteins for both facile synthesis and subsequent transfer of clusters to target apoproteins. The human mitochondrial ISCU2 scaffold protein is part of the core ISC (iron-sulfur cluster assembly) complex that synthesizes a bridging [2Fe-2S] cluster on dimeric ISCU2. Initial iron and sulfur loading onto monomeric ISCU2 have been elucidated biochemically, yet subsequent [2Fe-2S] cluster formation and dimerization of ISCU2 is mechanistically ill-defined.

View Article and Find Full Text PDF

Cells harbor two systems for fatty acid synthesis, one in the cytoplasm (catalyzed by fatty acid synthase, FASN) and one in the mitochondria (mtFAS). In contrast to FASN, mtFAS is poorly characterized, especially in higher eukaryotes, with the major product(s), metabolic roles, and cellular function(s) being essentially unknown. Here we show that hypomorphic mtFAS mutant mouse skeletal myoblast cell lines display a severe loss of electron transport chain (ETC) complexes and exhibit compensatory metabolic activities including reductive carboxylation.

View Article and Find Full Text PDF

Mitochondria and lysosomes are functionally linked, and their interdependent decline is a hallmark of aging and disease. Despite the long-standing connection between these organelles, the function(s) of lysosomes required to sustain mitochondrial health remains unclear. Here, working in yeast, we show that the lysosome-like vacuole maintains mitochondrial respiration by spatially compartmentalizing amino acids.

View Article and Find Full Text PDF

Zinc is an essential trace element that serves as a cofactor for enzymes in critical biochemical processes and also plays a structural role in numerous proteins. Zinc transporter ZIP4 (ZIP4) is a zinc importer required for dietary zinc uptake in the intestine and other cell types. Studies in cultured cells have reported that zinc stimulates the endocytosis of plasma membrane-localized ZIP4 protein, resulting in reduced cellular zinc uptake.

View Article and Find Full Text PDF

The electron transport chain (ETC) is an important participant in cellular energy conversion, but its biogenesis presents the cell with numerous challenges. To address these complexities, the cell utilizes ETC assembly factors, which include the LYR protein family. Each member of this family interacts with the mitochondrial acyl carrier protein (ACP), the scaffold protein upon which the mitochondrial fatty acid synthesis (mtFAS) pathway builds fatty acyl chains from acetyl-CoA.

View Article and Find Full Text PDF

In this issue of Cell Chemical Biology, Pandey et al. (2018) identified that mitochondrial cysteine desulfurase provides the sulfur species used for tRNA, tRNA, and tRNA thiouridine modification in the cytoplasm. A low-mass sulfur species is exported by the mitochondrial Atm1 transporter and utilized in the thio-modifications.

View Article and Find Full Text PDF

Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria.

View Article and Find Full Text PDF

Cytochrome (Cyt) is the only mitochondrial encoded subunit from the complex. Cbp3 and Cbp6 are chaperones necessary for translation of the mRNA and Cyt hemylation. Here we demonstrate that their role in translation is dispensable in some laboratory strains, whereas their role in Cyt hemylation seems to be universally conserved.

View Article and Find Full Text PDF

A host of critical metalloproteins reside in mitochondria, where metallation occurs within the organelle after protein import. Although the pathways by which proteins are imported into the mitochondria are well known, the mechanisms by which their metal partners are imported are more obscure. A new study by Boulet demonstrates that the mammalian SLC25A3 inner membrane transporter, previously known as a phosphate carrier, is also a functional Cu(I) importer, clarifying the source of mitochondrial copper and raising new questions about cellular copper homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Calcium influx into mitochondria stimulates ATP production, leading to investigation of how calcium transport changes in conditions of mitochondrial dysfunction, particularly in cardiomyopathies.
  • In a mouse model lacking the mitochondrial transcription factor Tfam in cardiomyocytes, signs of dilated cardiomyopathy and impaired energy synthesis were observed by the second postnatal week, along with increased mitochondrial calcium levels.
  • Results indicated enhanced activity of the calcium uniporter for Ca entry and inhibited sodium-calcium exchanger for Ca efflux, suggesting a compensatory mechanism where elevated mitochondrial Ca improves respiration and energy synthesis in the dysfunctional cardiac environment.
View Article and Find Full Text PDF

Background: Germline mutations in genes encoding subunits of succinate dehydrogenase (SDH) are associated with the development of pheochromocytoma (PC) and/or paraganglioma (PGL). As assembly factors have been identified as playing a role in maturation of individual SDH subunits and assembly of the functioning SDH complex, we hypothesized that SDHAF3 variants may be associated with PC/PGL and functionality of SDH.

Methods: DNA was extracted from the blood of 37 individuals (from 23 families) with germline SDH mutations and 18 PC/PGL (15 sporadic, 3 familial) and screened for mutations using a custom gene panel, containing SDHAF3 (SDH assembly factor 3) as well as eight known PC/PGL susceptibility genes.

View Article and Find Full Text PDF

Copper zinc superoxide dismutase (Sod1) is a critical enzyme in limiting reactive oxygen species in both the cytosol and the mitochondrial intermembrane space. Sod1 dismutes superoxide anions to hydrogen peroxide and oxygen. The catalytic reaction is dependent on an active site copper ion and a disulfide bonded conformation.

View Article and Find Full Text PDF

In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase.

View Article and Find Full Text PDF

Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation.

View Article and Find Full Text PDF

Cox23 is a known conserved assembly factor for cytochrome oxidase, although its role in cytochrome oxidase (CcO) biogenesis remains unresolved. To gain additional insights into its role, we isolated spontaneous suppressors of the respiratory growth defect in ∆ yeast cells. We recovered independent colonies that propagated on glycerol/lactate medium for ∆ cells at 37°C.

View Article and Find Full Text PDF

Structure determination by cryo-electron microscopy has approached atomic resolution and helped solve structures of large membrane-protein complexes that resisted crystallography. The 4.0 Å cryo-EM structure of one of the most intricate enzyme systems, the respirasome, in the mitochondrial inner membrane is reported in this issue of Cell.

View Article and Find Full Text PDF

Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex.

View Article and Find Full Text PDF

Iron-sulfur (Fe-S) clusters are essential for many cellular processes, ranging from aerobic respiration, metabolite biosynthesis, ribosome assembly and DNA repair. Mutations in NFU1 and BOLA3 have been linked to genetic diseases with defects in mitochondrial Fe-S centers. Through genetic studies in yeast, we demonstrate that Nfu1 functions in a late step of [4Fe-4S] cluster biogenesis that is of heightened importance during oxidative metabolism.

View Article and Find Full Text PDF

The cellular transport of the cofactor heme and its biosynthetic intermediates such as protoporphyrin IX is a complex and highly coordinated process. To investigate the molecular details of this trafficking pathway, we created a synthetic lesion in the heme biosynthetic pathway by deleting the gene HEM15 encoding the enzyme ferrochelatase in S. cerevisiae and performed a genetic suppressor screen.

View Article and Find Full Text PDF

Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes.

View Article and Find Full Text PDF

Disorders arising from impaired assembly of succinate dehydrogenase (SDH) result in a myriad of pathologies, consistent with its unique role in linking the citric acid cycle and electron transport chain. In spite of this critical function, however, only a few factors are known to be required for SDH assembly and function. We show here that two factors, Sdh6 (SDHAF1) and Sdh7 (SDHAF3), mediate maturation of the FeS cluster SDH subunit (Sdh2/SDHB).

View Article and Find Full Text PDF

Yeast cells deficient in the Rieske iron-sulfur subunit (Rip1) of ubiquinol-cytochrome c reductase (bc1) accumulate a late core assembly intermediate, which weakly associates with cytochrome oxidase (CcO) in a respiratory supercomplex. Expression of the N-terminal half of Rip1, which lacks the C-terminal FeS-containing globular domain (designated N-Rip1), results in a marked stabilization of trimeric and tetrameric bc1-CcO supercomplexes. Another bc1 mutant (qcr9Δ) stalled at the same assembly intermediate is likewise converted to stable supercomplex species by the expression of N-Rip1, but not by expression of intact Rip1.

View Article and Find Full Text PDF

Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix.

View Article and Find Full Text PDF